
CAPSULES AND

NON-WELL-FOUNDED COMPUTATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jean-Baptiste Jeannin

August 2013

c© Jean-Baptiste Jeannin 2013

ALL RIGHTS RESERVED

CAPSULES AND

NON-WELL-FOUNDED COMPUTATION

Jean-Baptiste Jeannin, Ph.D.

Cornell University 2013

Several recent programming languages, for example Python, C# and Javascript, are

not strictly imperative or functional, but provide features from both paradigms. In

this dissertation, we introduce capsules, an algebraic representation of the state of

a computation in such higher-order functional and imperative languages. A capsule

is essentially a finite coalgebraic representation of a regular closed λ-coterm. One

can give an operational semantics based on capsules for a higher-order program-

ming language with functional and imperative features, including mutable bindings.

Static (lexical) scoping is captured purely algebraically without stacks, heaps, or clo-

sures. Definitions and applications of functions, including recursive functions, are

typable with simple types, yet the language is Turing complete. Recursive functions

are represented directly as capsules without the need for fixpoint combinators. In

this disseration we precisely compare a capsule-based semantics to a closure-based

semantics. We also study a formulation of separation logic using capsules, prove

soundness of the frame rule in this context and investigate alternative formulations

with weaker side conditions.

Capsules, by their coinductive nature, also provide a clean internal representa-

tion of coalgebraic datatypes. Recursive functions defined on a such coalgebraic

datatypes may not converge if there are cycles in the input — that is, if the input

object is not well-founded. Even so, there is often a useful solution. Unfortunately,

current functional programming languages provide no support for specifying alter-

native solution methods. There are numerous examples in which it would be useful

to do so: free variables, α-conversion, and substitution in infinitary lambda-terms;

halting probabilities and expected running times of probabilistic protocols; abstract

interpretation; and constructions involving finite automata. In each case the func-

tion would diverge under the standard semantics of recursion. In this dissertation,

we first prove some theoretical results characterizing the well-founded case. We then

propose programming language constructs that allow the specification of alternative

solutions and methods to compute them. Finally, we introduce CoCaml, a functional

programming language extending OCaml that implements those constructs and al-

lows the programmer to define functions on coinductive datatypes parameterized by

an equation solver.

Biographical Sketch

Jean-Baptiste Jeannin, son of Benôıt and Isabelle Jeannin, grew up in Paris, France

and London, United Kingdom. After graduating high school from the Lycée Stanis-

las in Paris, France in 2002, he studied in the Classes Préparatoires MPSI and MP∗

of the Lycée Stanislas. He entered École polytechnique in 2004 where he special-

ized in computer science. Under the guidance of Gilles Dowek, François Pottier,

Dale Miller and Laurent Mauborgne, he got interested in Programming Languages.

In the Spring of 2007 he interned under César Muñoz at the National Institute of

Aerospace in Langley, Virginia.

In August 2007, Jean-Baptiste entered the Master of Engineering program in

Computer Science at Cornell University. After starting a project under the guidance

of Dexter Kozen, he soon realized that he wanted to do research and applied to the

Ph.D. program. He nevertheless graduated with a Master of Engineering in May

2008, before entering the Ph.D. program in January 2009. He continued working

with Dexter Kozen, and interned at Facebook under Yoann Padioleau, Microsoft

Research Redmond under Nikhil Swamy and Microsoft Research Bangalore (India)

under Prasad Naldurg. He visited Alexandra Silva in Amsterdam and Nijmegen,

The Netherlands. Jean-Baptiste graduated with a Ph.D. in Computer Science and

a minor in Mechanical and Aerospace Engineering in August 2013.

iii

À mes parents

À Bénédicte et Raphaëlle

iv

Acknowledgements

This thesis would never have been possible without my advisor, Dexter. I learnt

so much by your side! You are an amazing teacher, because you really care about

teaching and never get tired of explaining the same thing again and again. What

always impresses me the most is your constant ability to give me a mini-lecture

about any topic about which I had asked a question, without preparing or looking

up anything. You also have an extremely balanced life, between family, research,

sports and music, and I hope to achieve such balance in my life too. Thank you for

being such an example!

I would also like to thank the other members of my committee, Ashutosh, Hadas

and Nate, for always being available when I wanted to chat or ask more general

questions about my Ph.D. or my future.

Alexandra, you have become much more than a co-author but a real friend. You

arrived as a postdoc with Dexter at a moment when I needed some encouragements

and new research directions, and you sure provided that! Thank you so much

for always being there to listen, be it in Ithaca, Amsterdam or Nijmegen, and for

hosting me in the Netherlands twice. I hope to keep you as a friend and continue

collaborating!

Andrew, by teaching CS 6110 in the Fall of 2007, ingrained my love for program-

v

ming languages. Without such a good teacher, I might not have continued in that

field. Bob, thank you for your advice and encouragements, and your remarks on the

history of programming languages and theorem proving.

The Programming Languages Discussion Groups has become the place of many

interesting and enriching discussions over the years. Thanks in particular to Andrew,

Basu, Mark, Mike, Nate, Owen and Ross for your organizing skills, remarks and

discussions. My officemates Kostas, Stefano, Wenzel and Yao have always been

there for interesting discussions about Graphics, Systems, Artificial Intellingence,

Programming Languages or life in general. Thanks to all the players of the Computer

Science Hockey games for making me (re)discover this great game, and to their czars

Jeff and Owen.

Becky and Stephanie, thank you so much for always being there for us students,

never lose patience and always try to work out problems. And also for fun conversa-

tions! You are doing an amazing job every single day and I am so grateful. Thanks

also to Kelly, Randy and Michelle for putting up with my hate of administrative

tasks.

Yoann, Haiping, Nik and Prasad, thank you for mentoring me during my different

internships at Facebook, and Microsoft Research. You have helped me a lot with

looking at different research problems and getting a broader view of the field. Thanks

also to all the researchers I discussed with at conferences, in particular Matthias

Felleisen, Jean-Christophe Filliâtre, Neelakantan Krishnaswami, François Pottier,

and on trips to the Netherlands, in particular Helle Hansen, Stefan Milius and Jan

Rutten. Thanks also to Hersh Mehta for help with the implementation of CoCaml.

The Cornell Catholic Community has played a very important role in my life in

those years at Cornell, both spiritually and socially. Thank you especially to Father

vi

Dan, Father Bob, Father Carsten and Joe Mazzawi for running it and making it

the place that it is. It has also been a great place to make friends. The Souldiers

Community and its Tuesday night prayers and discussions have been an amazing

source of support and growth. Special thanks goes to our servants over the years,

Katie, Monica, Carolina, Danielle and Greg.

The East Hill Flying Club is an amazing place for flying! Thank you for providing

such amazing, well-maintainted planes, and great instruction! Flying is what makes

me really happy, and months, or even weeks, without a flight always feels like it is

missing something. Being a board member over the last two and half years gave me

a glimpse of what it takes to run such a club. I hope to find a similar place wherever

I go.

Jim, my housemate over the last four years, is the best housemate one can ever

dream of, and has become a great friend. As I come to think about it, I don’t think

we’ve had any argument in four years, which is pretty impressive. Thanks for always

being there to listen when I needed, or discrete when I needed, and for talking about

airplanes and going flying together. It’s always been a great experience! Also, we’re

taking the Mooney to San Diego and Seattle next summer, right?

Bri, thanks for being here, for supporting me or talking seriously even when I

don’t want it, and for making me grow so much! You have been an amazing support

over the last fifteen months!

I would like to end with my family, who is the closest to my heart. To my parents

and to my sisters Bénédicte and Raphaëlle, to whom this thesis is dedicated. Papa

et maman, thank you for raising me and making me love science and airplanes.

Bénédicte, you’ll become an amazing doctor, and Raphaëlle, a great genealogist.

Thank you for all your support throughout this Ph. D.

vii

Table of Contents

1 Introduction 1
1.1 Capsules . 4
1.2 Non-Well-Founded Computation . 4
1.3 Thesis Outline . 5

I Capsules 8

2 Computing with Capsules 9
2.1 Introduction . 9
2.2 Definitions . 13

2.2.1 Capsules . 13
2.2.2 Scope, Free and Bound Variables 13

2.3 Scoping Issues . 14
2.3.1 The λ-Calculus . 15
2.3.2 Dynamic Scoping . 16
2.3.3 Static Scoping with Closures 18
2.3.4 Static Scoping with Capsules 19

2.4 Soundness . 20
2.4.1 Evaluation Rules for Capsules 20
2.4.2 β-Reduction . 22
2.4.3 Soundness . 22
2.4.4 Closure Conversion . 26

2.5 A Functional/Imperative Language 33
2.5.1 Expressions . 33
2.5.2 Types . 34
2.5.3 Small-Step Evaluation . 35
2.5.4 Garbage Collection . 38
2.5.5 Big-Step Evaluation . 39

2.6 Conclusion . 41

viii

3 Capsules and Closures 43
3.1 Introduction . 43
3.2 Closure semantics . 45

3.2.1 Definitions . 45
3.2.2 Big-step . 46
3.2.3 Small-step . 47

3.3 Equivalence of the semantics . 52
3.3.1 Definitions . 52
3.3.2 Big-step . 54
3.3.3 Small-step . 67

3.4 Capsules encode less information . 73
3.5 Discussion . 76

3.5.1 Capsules and Closures: a strong correspondence 76
3.5.2 Suppression of the environment σ or the stack Σ 76

4 Capsules and Separation 77
4.1 Introduction . 77
4.2 Assertions . 78
4.3 Partial Correctness . 79
4.4 Capsules and Separation Logic . 81

4.4.1 Definitions . 81
4.4.2 The Frame Rule . 83
4.4.3 Discussion . 84
4.4.4 Alternative Conditions . 84

4.5 Conclusion and Future Work . 88

II Non-Well-Founded Computation 90

5 Well-Founded Coalgebras, Revisited 91
5.1 Introduction . 92
5.2 Realization of Coinductive Types . 96

5.2.1 Directed Multigraphs . 96
5.2.2 Type Signatures . 97
5.2.3 Coalgebras and Realizations 98
5.2.4 Final Coalgebras . 99

5.3 Characterization of Well-Founded Coalgebras 100
5.3.1 Well-Founded Coalgebras . 101
5.3.2 Induction Principle . 102
5.3.3 Main Theorem . 103
5.3.4 Non-Well-Founded Coalgebras 106

5.4 Well-Founded Examples . 106
5.4.1 Integer GCD . 107
5.4.2 Towers of Hanoi . 108

ix

5.4.3 Mutually Recursive Functions: even-odd 109
5.4.4 Ackermann Function . 111

5.5 Non-Well-Founded Examples . 112
5.5.1 Descending Sequences . 113
5.5.2 Alternating Turing Machines and IND Programs 114

5.6 Discussion . 115

6 Language Constructs for Non-Well-Founded Computation 116
6.1 Introduction . 117
6.2 Motivating Examples . 122

6.2.1 Substitution . 122
6.2.2 Probabilistic Protocols . 123
6.2.3 Abstract Interpretation . 127
6.2.4 Finite Automata . 130

6.3 A Framework for Non-Well-Founded Computation 131
6.3.1 Generating Equations . 133

6.4 A First Implementation . 134
6.4.1 Equations and Solvers . 134
6.4.2 Least Fixpoints . 139
6.4.3 Generating Coinductive Elements and Substitution 140
6.4.4 Gaussian Elimination . 142

6.5 Automatic Partitioning . 144
6.6 Conclusion . 145

7 CoCaml: Functional Programming with Regular Coinductive Types148
7.1 Preliminaries . 149

7.1.1 ML with Coalgebraic Datatypes 149
7.1.2 Capsule Semantics . 151

7.2 Equations and Solvers . 153
7.2.1 Equation Generation . 154
7.2.2 The iterator Solver . 155
7.2.3 The constructor Solver . 156
7.2.4 The gaussian Solver . 157
7.2.5 The separate Solver . 159
7.2.6 User-defined Solvers . 160

7.3 Examples . 162
7.3.1 Finite and Infinite Lists . 162
7.3.2 A Library for p-adic Numbers 166
7.3.3 Equality . 173

7.4 Implementation . 174
7.4.1 Overview . 174
7.4.2 Partial Evaluation . 175
7.4.3 Equality of Regular Coinductive Terms 176

7.5 Conclusions . 179

x

8 Related Work 180
8.1 Representation of the state of computation 180
8.2 Separation logic . 181
8.3 Non-Well-Founded Computation . 183

9 Summary and Future Directions 186

A Derivations of examples 189
A.1 Capsules . 189
A.2 Closures . 192

Bibliography 197

xi

Chapter 1

Introduction

Two paradigms have historically dominated the field of programming languages:

the functional and the imperative. Examples of functional programming languages

include LISP, Scheme, the ML family and Haskell, while Algol60, C and Java are

examples of imperative programming languages. Functional programs consist of

values and functions acting on those values, thus forming expressions that are eval-

uated to obtain a result. In a pure functional programming language, there is no

notion of state or of variables changing value throughout the computation. In con-

trast, imperative programs consist of commands that change a state, along with

control structures. Theoretically, functional programming is extensively studied as

the λ-calculus, while imperative programming is usually modeled as transitions on

states.

The functional and the imperative views might seem incompatible. However,

several functional languages provide some way of modifying the state of compu-

tation: LISP and Scheme have mutable variables, ML has references, and Haskell

provides monads. Moreover, while the most popular languages are imperative, some

recent designs have also incorporated functional features like first-class functions;

1

2

examples include Python, C# and Javascript. Despite this convergence, theoreti-

cal models continue to be either functional or imperative, traditionally functional

languages treat imperative features as an afterthought, and traditionally imperative

languages treat functional features as an afterthought as well.

From a verification point of view, imperative programming constructs are closer

to the hardware implementation, and are thus easier to compile. Several successful

verification techniques for imperative programs are based on Hoare logic, including

separation logic. Pure functional programming is closer to mathematics and pre-

serves referential transparency. Dependent typing has recently been successful in

verifying functional programs. But here again, the imperative and the functional

views seem incompatible.

The functional and the imperative views differ widely in their treatment of vari-

ables. In imperative programs, variables can be explicitly reassigned during the

execution, thus changing their value. This reassigning of variables is fundamental

to most computations. In functional programs however, variables are not variable,

they are merely identifiers that represent a value, and they cannot be reassigned.

However, in many cases the functional programmer would like to use some imper-

ative programming mechanisms involving mutable variables. To give this ability,

references simulate mutable variables in ML, using the constructs ref, :=, and !,

but these constructs alter the types. Other treatments, including monads [Mog91]

and explicit heaps [MS77, Sco72, Sto81, HMT84] , seem to look at the state as an

afterthought rather than something fundamental.

Another important aspect of studying programming languages that are both

functional and imperative is getting a better understanding of how the functional

and imperative paradigms interact. For example, the interaction between vari-

3

able assignment and first-class functions gives us recursive functions for free, using

Landin’s knot, also known as back-patching. More generally, circular data structures

and coinductive types can be built using variable assignment and back-patching. In

imperative programming languages, such circular data structures are usually manip-

ulated using pointer manipulations. This is inelegant, prone to errors and difficult

to maintain. It is in great contrast with the elegant way of using recursive functions

and pattern-matching to manipulate inductive types in ML. We would like to have

a similarly elegant way to manipulate circular data structures.

It is our thesis that a language can be both functional and imperative, without

having one paradigm be an afterthought, and that a much more elegant treatment

of functions on circular coinductive types in those languages is possible. This leads

to the three goals of this dissertation:

1. a theoretical goal: we reconcile the imperative and the functional paradigms by

introducing capsules, a simple, algebraic semantics for programming languages

that is both functional and imperative;

2. a verification goal: we show how to use capsules to perform some verification

tasks; we apply capsules to get a much simpler formulation of separation logic

than usually found in the literature;

3. a practical goal: we provide some elegant programming language constructs

that extend the concept of recursive functions to run on circular coinductive

datastructures.

4

1.1 Capsules

Capsules reconcile the functional and the imperative approach by providing a simple

semantics for a language that is both functional and imperative. They are based on

three simple ideas: mutable bindings, α-conversion before β-reduction, and repre-

sentation of the state as a λ-coterm. Mutable bindings allow identifiers to be bound

exactly as in λ-expressions and let-expressions in functional languages, but are also

mutable by explicit assignment; they existed in the early functional languages LISP

and Scheme, but were dropped in the ML family. Performing α-conversion of any

λ-term with a fresh variable before every β-reduction provides static scoping with-

out the need for closures. Finally, representing the state as a λ-coterm — essentially

a λ-term with possible loops in its abstract syntax tree — allows for a very clean

and compact representation of the state of computation. An important advantage

of this approach is that the interaction of higher-order functions and mutable vari-

ables gives recursive functions for free; they form loops in the state represented as

a λ-coterm; this is also how recursive functions are often implemented. Finally,

capsules provide a purely algebraic representation, without stacks, heaps, closures

or combinators.

1.2 Non-Well-Founded Computation

An advantage of capsules is that they provide an elegant representation of circu-

lar (coinductive) elements. One then wonders whether those coinductive elements

are useful and how one can do interesting computation with them. In OCaml for

example, such coinductive elements can be created statically, but not dynamically,

and not much can be done with them. Nevertheless they arise in numerous exam-

5

ples, including operations on infinitary λ-terms, probabilistic protocols and p-adic

numbers; in abstract interpretation; and in constructions involving finite automata.

In ML, standard recursion, along with pattern matching, provides a very intuitive

way of defining functions on inductive types. For coinductive types, the same input

might come back again and again and standard reduction just does not halt. Thus

termination is guaranteed for well-founded inputs. But what happens for non-well-

founded inputs, i.e., coinductive inputs with cycles? It turns out that, as long as the

set of inputs that are encountered is finite, equations can often be written down, then

solved, to provide a sensible answer. The programming language CoCaml provides a

corec keyword allowing the programmer to write recursive functions on coinductive

data in a way that is very similar to writing recursive functions on inductive data

in ML.

1.3 Thesis Outline

Chapter 2 Computing with Capsules is a precise theoretical presentation

of capsules. Capsules capture static scoping in an algebraic way instead of the

combinatorial way of closures. The chapter provides soundness of capsules with

respect to both the λ-calculus and closures, for a higher-order language without

mutable bindings. It then presents a complete semantics of capsules for a higher-

order language with mutable bindings. This chapter is based on the paper [JK12b].

Chapter 3 Capsules and Closures precisely compares capsules and closures

for a higher-order language with mutable bindings. Capsules are the mathematical

concept behind closures: in a sense, capsules are to closures what graphs are to their

adjacency list representations. The chapter provides two comparisons: a comparison

6

based on big-step semantics, which is simpler and makes the relationship between

capsules and closures easier to understand; and another comparison based on small-

step semantics, more complicated but ensuring soundness of capsules even for infinite

computations. This chapter is based on the papers [Jea11] and [Jea12].

Chapter 4 Capsules and Separation studies a formulation of separation logic

using capsules. It proves the frame rule in this context and investigates alternative

formulations with other side conditions. This chapter is based on the paper [JK12a].

Chapter 5 Well-Founded Coalgebras, Revisited proves some theoretical re-

sults characterizing well-founded coalgebras that slightly extend results of Adámek,

Lücke and Milius [ALM07]. It also gives several examples for which this extension

is useful, including mutually recursive functions, the Ackermann function, and the

greatest common divisor of two integers. This chapter is based on the technical

report [JKS13b].

Chapter 6 Language Constructs for Non-Well-Founded Computation in-

troduces the problem of non-well-founded computation with numerous examples. It

provides theoretical foundations, introduces programming language constructs to

allow recursive computation on non-well-founded terms, and proposes a first imple-

mentation. This chapter is based on the paper [JKS13a].

Chapter 7 CoCaml: Programming with Coinductive Types describes Co-

Caml, a functional language extending OCaml, which allows the programmer to

define functions on coinductive datatypes parameterized by an equation solver. It

shows its implementation, based on representing the state as a capsule. It also pro-

vides more examples attesting to the usefulness of the new constructs. This chapter

7

is based on the technical report [JKS12].

Chapter 8 Related Work provides a detailed literature survey of the areas

related to this dissertation — representing and reasoning about the state of compu-

tation, reasoning about locality, and computing with coinductive types.

Chapter 9 Future Directions concludes and opens up on ideas to extend the

work of this dissertation.

Part I

Capsules

8

Chapter 2

Computing with Capsules

Capsules provide an algebraic representation of the state of a computation in higher-

order functional and imperative languages. A capsule is essentially a finite coalge-

braic representation of a regular closed λ-coterm. One can give an operational

semantics based on capsules for a higher-order programming language with func-

tional and imperative features, including mutable bindings. Static (lexical) scoping

is captured purely algebraically without stacks, heaps, or closures. All operations

of interest are typable with simple types, yet the language is Turing complete. Re-

cursive functions are represented directly as capsules without the need for fixpoint

combinators.

2.1 Introduction

Capsules provide an algebraic representation of the state of a computation in higher-

order functional and imperative programming languages. They conservatively ex-

tend the classical λ-calculus with mutable variables and assignment, enabling the

construction of certain regular coterms (infinite terms) representing recursive func-

9

10

tions without the need for fixpoint combinators. They have a well-defined statically-

scoped evaluation semantics, are typable with simple types, and are Turing complete.

Representations of state have been studied in the past by many authors. Ap-

proaches include syntactic theories of control and state [FFF09,FH92a], the seman-

tics of local storage [HMT84], functional languages with effects [MT,MT89a,MT91],

monads [Mog91], closure structures [AH01, AHK06, AHK07] and denotational se-

mantics [MS77, Sco72, Sto81]. Capsules provide a purely algebraic alternative in

that no combinatorial structures are needed. Perhaps the most important aspect

of capsules is that static scoping and local variables are captured without the need

for closures. Cumbersome combinatorial machinery such as heaps, stores, stacks,

and pointers are replaced with the single mathematical concept of variable binding.

Nevertheless, capsules are equally expressive and represent the same data depen-

dencies and liveness structure. In a sense, capsules are to closures what graphs are

to their adjacency list representations.

Formally, a capsule is a particular syntactic representation of a finite coalge-

bra of the same signature as the λ-calculus. A capsule represents a regular closed

λ-coterm (infinite λ-term) under the unique morphism to the final coalgebra of

this signature. This final coalgebra has been studied under the name infinitary

λ-calculus, focusing mostly on infinitary rewriting [BK09, KdV05]. It has been ob-

served that the infinitary version does not share many of the desirable properties

of its finitary cousin; for example, it is not confluent, and there exist coterms with

no computational significance. However, all coterms represented by capsules are

computationally meaningful.

One can give an operational semantics based on capsules for a higher-order pro-

gramming language with both functional and imperative features, including recur-

11

sion and mutable variables, and this is one of the primary motivations of this work.

All operations of interest are typable with simple types. Recursive functions are

constructed directly using Landin’s knot [Lan64] without the need for fixpoint com-

binators, which involve self-application and are untypable with simple types. More-

over, the traditional Y combinator forces a normal-order (lazy) evaluation strategy

to ensure termination. Other more complicated fixpoint combinators can be used

with applicative order by encapsulating the self-application in a thunk to delay eval-

uation, but this is even more unnatural. In contrast, the construction of recursive

functions with Landin’s knot is direct and simply typable, and corresponds more

closely to implementations. Turing completeness is impossible with finite types and

finite terms, as the simply-typed λ-calculus is strongly normalizing; so we must have

either infinitary types or infinitary terms. Whereas the former is more conventional,

we believe the latter is more natural and closer to implementations.

Dynamic scoping, which was the scoping discipline in early versions of LISP

and Python, and which still exists in many languages today, can be regarded as an

implementation of lazy β-reduction that fails to observe the principle of safe substi-

tution (α-conversion to avoid capture of free variables). We explain this view more

fully with a detailed example in §6.2. In contrast, the λ-calculus with β-reduction

and safe substitution is statically scoped. Both capsules and closures provide static

scoping, but capsules do so without any extra combinatorial machinery. More-

over, capsules work correctly in the presence of mutable variables, whereas closures,

naively implemented, do not (a counterexample is given in §2.4.4). To correctly

handle mutable variables, closures require some form of indirection, and care must

be taken to perform updates nondestructively.

Capsules provide a common framework for representing the global state of com-

12

putation for both functional and imperative programs. Valuations of mutable vari-

ables used in the semantics of imperative programs and closure structures used in

the operational semantics of functional programs can be simulated. Capsules also

allow a clean mathematical definition of garbage collection: there is a natural no-

tion of morphism, and the garbage-collected version of a capsule is the unique (up

to isomorphism) initial object among its monomorphic preimages.

This chapter is organized as follows. In §2.2, we give formal definitions of cap-

sules. In §2.3, we give a detailed motivating example comparing how closures and

capsules deal with scoping issues. In §2.4 we prove two theorems. The first (The-

orem 2.4.1) establishes that capsule evaluation faithfully models β-reduction in the

λ-calculus with safe substitution. The second (Theorem 2.4.7) defines closure con-

version for capsules and proves soundness of the translation, provided there is no

variable assignment. Taken together, these two theorems establish that closures

also correctly model β-reduction in the λ-calculus with safe substitution. The same

results hold in the presence of assignment, but the definition of closures must be ex-

tended; the definition of capsules remains the same, as we will see in chapter 3. The

proof techniques in this section are purely algebraic and involve some interesting

applications of coinduction. Finally, in §2.5, we describe a simply-typed function-

al/imperative language with mutable bindings and give an operational semantics in

terms of capsules.

13

2.2 Definitions

2.2.1 Capsules

Consider the simply-typed λ-calculus with typed constants (e.g., 3 : int, true : bool,

+ : int → int → int, ≤ : int → int → bool). The set of λ-abstractions is denoted

λ-Abs and the set of constants is denoted Const. A λ-term is irreducible if it is

either a λ-abstraction λx.e or a constant c. The set of irreducible terms is Irred =

λ-Abs + Const. Note that variables x are not irreducible.

Let FV(e) denote the set of free variables of e. A capsule is a pair 〈e, σ〉, where e

is a λ-term and σ : Var ⇀ Irred is a partial function with finite domain domσ, such

that

(i) FV(e) ⊆ domσ

(ii) if x ∈ domσ, then FV(σ(x)) ⊆ domσ.

A capsule 〈e, σ〉 is irreducible if e is.

Note that cycles are allowed; this is how recursive functions are represented. For

example, we might have σ(f) = λn.if n = 0 then 1 else n · f(n− 1).

2.2.2 Scope, Free and Bound Variables

Let 〈e, σ〉 be a capsule and let d be either e or σ(y) for some y ∈ domσ. The

scope of an occurrence of a binding operator λx in d is its scope in the λ-term d as

normally defined.

Consider an occurrence of a variable x in d. The closure conditions (i) and (ii)

of §2.2.1 ensure that one of the following two conditions holds:

14

• that occurrence of x falls in the scope of a binding operator λx in d, in which

case it is bound to the innermost binding operator λx in d in whose scope it

lies; or

• it is free in d, but x ∈ domσ, in which case it is bound by σ to the value σ(x).

Thus every variable x in a capsule is essentially bound. These conditions thus

preclude catastrophic failure due to access of unbound variables.

It is important to note that scope does not extend through bindings in σ. For

example, consider the capsule 〈λx.y, [y = λz.x, x = 2]〉. The free occurrence of x

in λz.x is not bound to the λx in λx.y, but rather to the value 2. The coalgebra

represented by the capsule has three states and represents the closed term λx.λz.2.

For this reason, one cannot simply substitute σ(y) for y in e without α-conversion.

This is also reflected in the evaluation rules to be given in §2.4.1. In a capsule 〈e, σ〉,

all free variables in e or σ(y) are in domσ, therefore bound to a value; thus every

capsule represents a closed coterm.

The term α-conversion refers to the renaming of bound variables. With a capsule

〈e, σ〉, this can happen in two ways. The traditional form maps a subterm λx.d to

λy.d[x/y], provided y would not be captured in d. One can also rename a variable

x ∈ domσ and all free occurrences of x in e and σ(z) for z ∈ domσ to y, provided

y 6∈ domσ already and y would not be captured.

2.3 Scoping Issues

We motivate the results of §2.4 with an example illustrating how dynamic scop-

ing arises from a naive implementation of lazy substitution and how capsules and

closures remedy the situation.

15

2.3.1 The λ-Calculus

The oldest and simplest of all functional languages is the λ-calculus. In this system,

a state is a closed λ-term, and computation consists of a sequence of β-reductions

(λx.d) e → d[x/e],

where d[x/e] denotes the safe substitution of e for all free occurrences of x in d. Safe

substitution means that bound variables in d may have to be renamed (α-converted)

to avoid capturing free variables of the substituted term e.

For example, consider the closed λ-term (λy.(λz.λy.z 4)λx.y) 3 2. Evaluating

this term in (shallow) applicative order1, we get the following sequence of terms

leading to the value 3:

(λy.(λz.λy.z 4) λx.y) 3 2 → (λz.λy.z 4) (λx.3) 2

→ (λy.(λx.3) 4) 2→ (λx.3) 4→ 3 (2.1)

No α-conversion was necessary. In fact, no α-conversion is ever necessary with

applicative-order evaluation of closed terms, because the argument substituted for

a parameter in a β-reduction is closed, thus has no free variables to be captured. It

is key that the term being evaluated be closed, as studied in the combinatorial weak

λ-calculus [cH98] and closed reductions [FMS05].

However, the λ-calculus is confluent, and we may choose a different order of

evaluation; but an alternative order may require α-conversion. For example, the

1Also known as left-to-right call-by-value order, the order of evaluation in which the leftmost

innermost redex is reduced first, except that redexes in the scope of binding operators λx are

ineligible for reduction.

16

following reduction sequence is also valid:

(λy.(λz.λy.z 4) λx.y) 3 2 → (λy.λw.(λx.y) 4) 3 2

→ (λw.(λx.3) 4) 2→ (λx.3) 4→ 3 (2.2)

A change of bound variable was required in the first step to avoid capturing

the free occurrence of y in λx.y substituted for z. Failure to do so results in the

erroneous value 2:

(λy.(λz.λy.z 4) λx.y) 3 2 → (λy.λy.(λx.y) 4) 3 2

→ (λy.(λx.y) 4) 2→ (λx.2) 4→ 2 (2.3)

2.3.2 Dynamic Scoping

In the early development of functional programming, specifically with the language

LISP, it was quickly determined that physical substitution is too inefficient because

it requires copying [McC81]. This led to the introduction of environments, used to

effect lazy substitution. Instead of doing the actual substitution when performing

a β-reduction, one can defer the substitution by saving it in an environment, then

look up the value when needed.

An environment is a partial function σ : Var ⇀ Irred with finite domain. A

state is a pair 〈e, σ〉, where e is the term to be evaluated and σ is an environment

with bindings for the free variables in e. Environments need to be updated, which

17

requires a rebinding operator 2

(σ[x/e])(y) =


e, if x = y,

σ(y), if x 6= y.

Naively implemented, the rules are

〈(λx.d) e, σ〉 → 〈d, σ[x/e]〉

〈y, σ〉 → 〈σ(y), σ〉

where the first rule saves the deferred substitution in the environment and the second

looks up the value. This is quite easy to implement. Moreover, it stands to reason

that if β-reduction in applicative order does not require any α-conversions, then the

lazy approach should not either. After all, the same terms are being substituted,

just at a later time.

However, this is not the case. In the example above, we obtain the following

sequence of states leading to the value 2:

〈(λy.(λz.λy.z 4) λx.y) 3 2, []〉 → 〈(λz.λy.z 4) (λx.y) 2, [y = 3]〉

→ 〈(λy.z 4) 2, [y = 3, z = λx.y]〉

→ 〈z 4, [y = 2, z = λx.y]〉

→ 〈(λx.y) 4, [y = 2, z = λx.y]〉

→ 〈y, [y = 2, z = λx.y, x = 4]〉

→ 〈2, [y = 2, z = λx.y, x = 4]〉

The issue is that the lazy approach fails to observe safe substitution. This example

effectively performs the deferred substitutions in the order (2.3) without the change

2Note that we use the same notation for replacing all free occurrences of a variable in a expres-

sion, and rebinding a variable in an environment. This is on purpose, as these two operations are

of similar nature.

18

of bound variable. Nevertheless, this was the strategy adopted by early versions of

LISP [McC81]. It was not considered a bug but a feature and was called dynamic

scoping.

2.3.3 Static Scoping with Closures

The semantics of evaluation was brought more in line with the λ-calculus with

the introduction of closures [Lan64,McC81]. Formally, a closure is defined as a pair

{λx.e, σ}, where the λx.e is a λ-abstraction and σ is a partial function from variables

to values that is used to interpret the free variables of λx.e. When a λ-abstraction

is evaluated, it is paired with the environment σ at the point of the evaluation, and

the value is the closure {λx.e, σ}. Thus we have

σ : Var ⇀ Val Val = Const + Cl

where Cl denotes the set of closures. We require that for a closure {λx.e, σ},

FV(λx.e) ⊆ domσ. Note that the definitions of values and closures are mutually

dependent.

The new reduction rules are

〈λx.d, σ〉 →cl {λx.d, σ}

〈{λx.d, σ} e, τ〉 →cl 〈d, σ[x/e]〉

〈y, σ〉 →cl σ(y).

The second rule says that an application uses the context σ that was in effect when

the closure was created, not the context τ of the call. Turning to our running

19

example,

〈(λy.(λz.λy.z 4) λx.y) 3 2, []〉 →cl 〈(λz.λy.z 4) (λx.y) 2, [y = 3]〉

→cl 〈(λy.z 4) 2, [y = 3, z = {λx.y, [y = 3]}]〉

→cl 〈z 4, [y = 2, z = {λx.y, [y = 3]}]〉

→cl 〈{λx.y, [y = 3]} 4, [y = 2, z = {λx.y, [y = 3]}]〉

→cl 〈(λx.y) 4, [y = 3]〉

→cl 〈y, [y = 3, x = 4]〉

→cl 〈3, [y = 3, x = 4]〉

2.3.4 Static Scoping with Capsules

Closures correctly capture the semantics of β-reduction with safe substitution, but

at the expense of introducing extra combinatorial machinery to represent and manip-

ulate pairs {λx.e, σ}. Capsules allow us to revert to a purely λ-theoretic framework

without losing the benefits of closures.

Capsules were defined formally in §2.2.1. Capsule evaluation semantics looks

very much like the original evaluation semantics of LISP, with the added twist that

a fresh variable is substituted for the parameter in β-reductions. The small-step

reduction rules for capsules are

〈(λx.e) v, σ〉 → 〈e[x/y], σ[y/v]〉 (y fresh)

〈y, σ〉 → 〈σ(y), σ〉

In the original evaluation semantics of LISP, the right-hand side of the first rule is

〈e, σ[x/v]〉, which gives dynamic scoping. The key difference here is the introduction

of the fresh variable y in the application rule. This is tantamount to performing an

20

α-conversion on the parameter of a function just before applying it. Turning to our

running example, we see that this approach gives the correct result.

〈(λy.(λz.λy.z 4) λx.y) 3 2, []〉 →ca 〈(λz.λy.z 4) (λx.y′) 2, [y′ = 3]〉

→ca 〈(λy.z′ 4) 2, [y′ = 3, z′ = λx.y′]〉

→ca 〈z′ 4, [y′ = 3, z′ = λx.y′, y′′ = 2]〉

→ca 〈(λx.y′) 4, [y′ = 3, z′ = λx.y′, y′′ = 2]〉

→ca 〈y′, [y′ = 3, z′ = λx.y′, y′′ = 2, x′ = 4]〉

→ca 〈3, [y′ = 3, z′ = λx.y′, y′′ = 2, x′ = 4]〉

We prove soundness formally in §2.4.

2.4 Soundness

In this section we show that capsule evaluation is statically scoped under applicative-

order evaluation and correctly models β-reduction in the λ-calculus with safe sub-

stitution.

2.4.1 Evaluation Rules for Capsules

Let d, e, . . . denote λ-terms and u, v, . . . irreducible λ-terms (λ-abstractions and con-

stants). Variables are denoted x, y, . . . and constants c, f . For any constant f de-

noting a function in the language, there exists an application function from terms

to terms, that is also written f .

21

The small-step evaluation rules for capsules consist of reduction rules

〈(λx.e) v, σ〉 →ca 〈e[x/y], σ[y/v]〉 (y fresh) (2.4)

〈f c, σ〉 →ca 〈f(c), σ〉 (2.5)

〈y, σ〉 →ca 〈σ(y), σ〉 (2.6)

and context rules

〈d, σ〉 ∗→ca 〈d′, τ〉
〈d e, σ〉 ∗→ca 〈d′ e, τ〉

〈e, σ〉 ∗→ca 〈e′, τ〉
〈v e, σ〉 ∗→ca 〈v e′, τ〉

(2.7)

where ∗→ca denotes the repetition of zero or more steps of →ca. The reduction rules

(2.4)–(2.6) identify three forms of redex: an application (λx.e) v, an application

f c where f and c are constants, or a variable y ∈ domσ. The context rules (2.7)

uniquely identify a redex in a well-typed non-irreducible capsule according to an

applicative-order reduction strategy.

The corresponding large-step rules are

〈y, σ〉⇓ca〈σ(y), σ〉 (2.8)

〈d, σ〉⇓ca〈f, τ〉 〈e, τ〉⇓ca〈c, ρ〉
〈d e, σ〉⇓ca〈f(c), ρ〉

(2.9)

〈d, σ〉⇓ca〈λx.a, τ〉 〈e, τ〉⇓ca〈v, ρ〉 〈a[x/y], ρ[y/v]〉⇓ca〈u, π〉 (y fresh)
〈d e, σ〉⇓ca〈u, π〉

(2.10)

These rules are best understood in terms of the interpreter they generate:

Eval(c, σ) = 〈c, σ〉

Eval(λx.e, σ) = 〈λx.e, σ〉 (2.11)

Eval(y, σ) = 〈σ(y), σ〉

Eval(d e, σ) = let 〈u, τ〉 = Eval(d, σ) in

let 〈v, ρ〉 = Eval(e, τ) in

22

Apply(u, v, ρ)

Apply(f, c, σ) = 〈f(c), σ〉

Apply(λx.e, v, σ) = Eval(e[x/y], σ[y/v]) (y fresh) (2.12)

2.4.2 β-Reduction

The small-step evaluation rules for β-reduction in applicative order are the same as

for capsules, except we replace (2.4) with

〈(λx.e) v, σ〉 → 〈e[x/v], σ〉 (2.13)

(substitution instead of rebinding). The other rules (2.5)–(2.7) are the same. This

makes sense even in the presence of cycles (recursive functions).

Note that the initial valuation σ persists unchanged throughout the computation.

We might suppress it to simplify notation, giving

(λx.e) v → e[x/v] f c→ f(c) y → σ(y)

d ∗→ d′

(d e) ∗→ (d′ e)
e ∗→ e′

(v e) ∗→ (v e′)

However, it is still implicitly present, as it is needed to evaluate variables y.

The corresponding interpreter Evalβ is defined exactly like Eval except for rule

(2.12), which we replace with

Applyβ(λx.e, v, σ) = Evalβ(e[x/v], σ).

2.4.3 Soundness

We are now ready to prove soundness. We do so by proving that the evaluation using

capsules of an expression e is mirrored by an evaluation of e using β-reduction.

23

Let S denote a sequential composition of rebinding operators [y1/v1] · · · [yk/vk],

applied from left to right. Applied to a partial valuation σ : Var ⇀ Irred, the

operator S sequentially rebinds y1 to v1, then y2 to v2, and so on. The result is

denoted σS. Formally, σ(S[y/v]) = (σS)[y/v].

To every rebinding operator S = [y1/v1] · · · [yk/vk] there corresponds a safe sub-

stitution operator S− = [yk/vk] · · · [y1/v1], also applied from left to right. Applied

to a λ-term e, S− safely substitutes vk for all free occurrences of yk in e, then vk−1

for all free occurrences of yk−1 in e[yk/vk], and so on. The result is denoted eS−.

Formally, e(S−[y/v]) = (eS−)[y/v]. Note that (ST)− = T−S−.

If S = [y1/v1] · · · [yk/vk], we assume that yi does not occur in vj for i ≥ j;

however, yi may occur in vj if i < j. This means that if FV(e) ⊆ {y1, . . . , yk} and

FV(vj) ⊆ {y1, . . . , yj−1}, 1 ≤ j ≤ k, then eS− is closed.

The following theorem establishes soundness of capsule evaluation with respect

to β-reduction in the λ-calculus.

Theorem 2.4.1 Evalβ(e, σ) = 〈v, σ〉 if and only if there exist irreducible terms

v1, . . . , vk, u and a rebinding operator S = [y1/v1] · · · [yk/vk], where y1, . . . , yk do not

occur in e, v, or σ, such that Eval(e, σ) = 〈u, σS〉 and v = uS−.

Proof. We show the implication in both directions by induction on the number

of steps in the evaluation. The result is trivially true for inputs of the form 〈c, σ〉,

〈λx.e, σ〉, and 〈σ(y), σ〉, and this gives the basis of the induction.

(⇒) For an input of the form 〈d e, σ〉, we show the implication in both direc-

tions. We first show that if Eval(d e, σ) is defined, then so is Evalβ(d e, σ), and the

relationship between the two values is as described in the statement of the theorem.

By definition of Eval, we have

Eval(d, σ) = (u, σS) Eval(e, σS) = (v, σST)

24

for some S = [y1/v1] · · · [ym/vm] and T = [ym+1/vm+1] · · · [yn/vn], where y1, . . . , yn

are the fresh variables and v1, . . . , vn the irreducible terms bound to them in ap-

plications of the rule (2.12) during the evaluation of d and e. By the induction

hypothesis, we have

Evalβ(d, σ) = 〈uS−, σ〉 Evalβ(e, σS) = 〈vT−, σS〉.

Since the variables y1, . . . , ym do not occur in e, they are not accessed in its evalu-

ation, thus Evalβ(e, σ) = 〈vT−, σ〉. Also, since ym+1, . . . , yn do not occur in u and

y1, . . . , ym do not occur in v, we have uS− = u(ST)− and vT− = v(ST)−, thus

Evalβ(d, σ) = 〈u(ST)−, σ〉 Evalβ(e, σ) = 〈v(ST)−, σ〉.

We thus have

Eval(d e, σ) = Apply(u, v, σST) Evalβ(d e, σ) = Applyβ(u(ST)−, v(ST)−, σ)

If u and v are constants, say u = f and v = c, then

Eval(d e, σ) = Apply(f, c, σST) = 〈f(c), σST 〉

Evalβ(d e, σ) = Applyβ(f, c, σ) = 〈f(c), σ〉,

and the implication holds. If u is a λ-abstraction, say u = λx.a, then u(ST)− =

λx.a(ST)−. Then

a(ST)−[x/v(ST)−] = a[x/v](ST)− = a[x/yn+1][yn+1/v](ST)−

= a[x/yn+1](ST [yn+1/v])−,

therefore

Eval(d e, σ) = Apply(λx.a, v, σST) = Eval(a[x/yn+1], σST [yn+1/v])

Evalβ(d e, σ) = Applyβ(λx.a(ST)−, v(ST)−, σ) = Evalβ(a(ST)−[x/v(ST)−], σ)

= Evalβ(a[x/yn+1](ST [yn+1/v])−, σ),

25

and the implication holds in this case as well.

(⇐) For the reverse implication, assume that Evalβ(d e, σ) is defined. Let

〈u, σ〉 = Evalβ(d, σ) and 〈v, σ〉 = Evalβ(e, σ). By the induction hypothesis, there

exist variables y1, . . . , ym and irreducible terms v1, . . . , vm and r such that

u = rS− Eval(d, σ) = 〈r, σS〉,

where S = [y1/v1] · · · [ym/vm]. We also have 〈v, σS〉 = Evalβ(e, σS), since the

evaluation of e does not depend on the variables y1, . . . , ym. Again by the induction

hypothesis, there exist variables ym+1, . . . , yn and irreducible terms vm+1, . . . , vn and

s such that

v = sT− = sT−S− = s(ST)− Eval(e, σS) = 〈s, σST 〉,

where T = [ym+1/vm+1] · · · [yn/vn]. Then ST = [y1/v1] · · · [yn/vn] and

Evalβ(d e, σ) = Applyβ(u, v, σ) Eval(d e, σ) = Apply(r, s, σST).

If u and v are constants, say u = f and v = c, then r = f and s = c. In this

case we have

Evalβ(d e, σ) = Applyβ(f, c, σ) = 〈f(c), σ〉

Eval(d e, σ) = Apply(f, c, σST) = 〈f(c), σST 〉,

and the implication holds. If u is a λ-abstraction, then r = λx.a and u = λx.aS− =

λx.a(ST)−. In this case

a(ST)−[x/s(ST)−] = a[x/s](ST)− = a[x/yn+1][yn+1/s](ST)−

= a[x/yn+1](ST [yn+1/s])
−,

thus

Evalβ(d e, σ) = Applyβ(λx.a(ST)−, v, σ) = Evalβ(a(ST)−[x/s(ST)−], σ)

= Evalβ(a[x/yn+1](ST [yn+1/s])
−, σ),

Eval(d e, σ) = Apply(λx.a, s, σST) = Eval(a[x/yn+1], σST [yn+1/s]),

26

so the implication holds in this case as well. 2

2.4.4 Closure Conversion

Closure conversion is an important step of compiling any functional language. In

this section we demonstrate how to closure-convert a capsule and show that the

transformation is sound with respect to the evaluation semantics of closures and

capsules in applicative-order evaluation, provided variables are not mutable.

Closures do not work in the presence of mutable variables without introducing

the further complication of references and indirection. This is because closures

fix the environment once and for all when the closure is formed, whereas mutable

variables allow the environment to be subsequently changed. An example is given by

(λy.(λx.y) (y := 4; y)) 3, for which capsules give 4 and closures, implemented naively

as above, give 3. Capsules handle the assignment correctly, but with closures, the

assignment has no effect.

Care must also be taken to implement updates nondestructively so as not to

overwrite parameters and local variables of recursive procedures, an issue that is

usually addressed at the implementation level. Again, the issue does not arise with

capsules.

Even without indirection, the types of closures and closure environments are

more involved than those of capsules. A closer look at the definitions of §2.3.3 shows

that the definitions are mutually dependent and require a recursive, coinductive type

definition [Rut00, §11]. The types are

Env = Var ⇀ Val closure environments

Val = Const + Cl values

Cl = λ-Abs× Env closures

27

We use boldface for closure environments σ : Env to distinguish them from the

simpler capsule environments. Closures {λx.e, σ} must satisfy the additional re-

quirement that FV(λx.e) ⊆ domσ.

A state is now a pair 〈e, σ〉, where FV(e) ⊆ domσ, but the result of an eval-

uation is a Val. The evaluation semantics for closures, expressed as an interpreter

Evalc, is

Evalc(c,σ) = c

Evalc(λx.e,σ) = {λx.e, σ}

Evalc(y,σ) = σ(y)

Evalc(d e,σ) = let u = Evalc(d,σ) in

let v = Evalc(e,σ) in

Applyc(u, v)

Applyc(f, c) = f(c)

Applyc({λx.a, ρ}, v) = Evalc(a,ρ[x/v]) (2.14)

The types are

Evalc : Exp× Env ⇀ Val Applyc : Val× Val ⇀ Val.

The correspondence with capsules becomes simpler to state if we modify the inter-

preter to α-convert the term λx.a to λy.a[x/y] just before applying it, where y is

the fresh variable that would be chosen by the capsule interpreter. Accordingly, we

replace (2.14) with

Applyc({λx.a, ρ}, v) = Evalc(a[x/y],ρ[y/v]) (y fresh)

The corresponding large-step rules are

〈c, σ〉 c→ c 〈λx.e, σ〉 c→ {λx.e, σ} 〈y, σ〉 c→ σ(y) (2.15)

28

〈d, σ〉 c
∗→ f 〈e, σ〉 c

∗→ c

〈d e, σ〉 c
∗→ f(c)

(2.16)

〈d, σ〉 c
∗→ {λx.a, ρ} 〈e, σ〉 c

∗→ v 〈a[x/y], ρ[y/v]〉 c
∗→ u

(y fresh)
〈d e, σ〉 c

∗→ u
(2.17)

The closure-converted form of a capsule 〈e, σ〉 is 〈e, σ〉, where for any σ, we

define σ as a map with domσ = domσ and

σ(y) =


{σ(y), σ}, if σ(y) : λ-Abs,

σ(y), if σ(y) : Const.

This definition is not circular, it is a well-defined coinductive definition. A thorough

explanation of coinductive definitions and why they are well-defined, as well as

similar examples of coinductive definitions, can be found in [Rut00, §11].

To state the relationship between capsules and closures, we define a binary re-

lation v on capsule environments, closure environments, and values. For capsule

environments, define σ v τ if domσ ⊆ dom τ and for all y ∈ domσ, σ(y) = τ(y).

The definition for values and closure environments is by mutual coinduction: v is

defined to be the largest relation such that

• on closure environments, σ v τ if

– domσ ⊆ dom τ , and

– for all y ∈ domσ, σ(y) v τ (y); and

• on values, u v v if either

– u and v are constants and u = v; or

– u = {λx.e, ρ}, v = {λx.e, π}, and ρ v π.

Lemma 2.4.2 The relation v is transitive.

29

Proof. This is obvious for capsule environments.

For closure environments and values, we proceed by coinduction. Suppose σ v

τ v ρ. Then domσ ⊆ dom τ ⊆ domρ, so domσ ⊆ domρ, and for all y ∈ domσ,

σ(y) v τ (y) v ρ(y), therefore σ(y) v ρ(y) by the transitivity of v on values.

For values, suppose u v v v w. If u = c, then v = c and w = c. If u = {λx.e, σ},

then v = {λx.e, τ} and w = {λx.e, ρ} and σ v τ v ρ, therefore σ v ρ by the

transitivity of v on closure environments. 2

Lemma 2.4.3 Closure conversion is monotone with respect to v. That is, if σ v τ ,

then σ v τ .

Proof. We have domσ = domσ ⊆ dom τ = dom τ . Moreover, for y ∈ domσ,

σ(y) =


{λx.e, σ}, if σ(y) = λx.e,

c, if σ(y) = c

=


{λx.e, σ}, if τ(y) = λx.e,

c, if τ(y) = c

v


{λx.e, τ}, if τ(y) = λx.e,

c, if τ(y) = c

= τ(y).

The v step in the above reasoning is by the coinduction hypothesis. 2

Define a map V : Cap→ Val on irreducible capsules as follows:

V (λx.a, σ) = {λx.a, σ} V (c, σ) = c. (2.18)

Lemma 2.4.4 σ(y) = V (σ(y), σ).

Proof.

σ(y) =


{λx.e, σ}, if σ(y) = λx.e,

c if σ(y) = c

=


V (λx.e, σ), if σ(y) = λx.e,

V (c, σ) if σ(y) = c

= V (σ(y), σ).

2

30

Lemma 2.4.5 If y 6∈ domσ, then σ[y/V (v, σ)] v σ[y/v].

Proof. By Lemma 2.4.4,

σ[y/v](y) = V (σ[y/v](y), σ[y/v]) = V (v, σ[y/v]). (2.19)

If y 6∈ domσ, then

σ[y/V (v, σ)] v σ[y/v][y/V (v, σ)] v σ[y/v][y/V (v, σ[y/v])] = σ[y/v],

the first two inequalities by Lemma 2.4.3 and the last equation by (2.19). 2

Lemma 2.4.6 If σ v τ , then Evalc(e,σ) exists if and only if Evalc(e, τ) does, and

Evalc(e,σ) v Evalc(e, τ). Moreover, they are derivable by the same large-step proofs.

Proof. We proceed by induction on the proof tree under the large-step rules

(2.15)–(2.17). For the single-step rules (2.15), we have

Evalc(c,σ) = c = Evalc(c, τ)

Evalc(λx.a,σ) = {λx.a, σ} v {λx.a, τ} = Evalc(λx.a, τ)

Evalc(y,σ) = σ(y) v τ (y) = Evalc(y, τ).

For the rule (2.16), 〈d e, σ〉 c
∗→ f(c) is derivable by an application of (2.16) iff

〈d, σ〉 c
∗→ f and 〈e, σ〉 c

∗→ c are derivable by smaller proofs. Similarly, 〈d e, τ 〉 c
∗→

f(c) is derivable by an application of (2.16) iff 〈d, τ 〉 c
∗→ f and 〈e, τ 〉 c

∗→ c are

derivable by smaller proofs. By the induction hypothesis, 〈d, σ〉 c
∗→ f and 〈d, τ 〉 c

∗→

f are derivable by the same proof, and similarly 〈e, σ〉 c
∗→ c and 〈e, τ 〉 c

∗→ c are

derivable by the same proof.

Finally, for the rule (2.17), 〈d e, σ〉 c
∗→ u1 is derivable by an application of (2.17)

iff 〈d, σ〉 c
∗→ {λx.a, ρ1}, 〈e, σ〉 c

∗→ v1, and 〈a[x/y], ρ1[y/v1]〉 c
∗→ u1 are derivable by

smaller proofs. Similarly, 〈d e, τ 〉 c
∗→ u2 is derivable by an application of (2.17) iff

31

〈d, τ 〉 c
∗→ {λx.a, ρ2}, 〈e, τ 〉 c

∗→ v2, and 〈a[x/y], ρ2[y/v2]〉 c
∗→ u2 are derivable by

smaller proofs. By the induction hypothesis, 〈d, σ〉 c
∗→ {λx.a, ρ1} and 〈d, τ 〉 c

∗→

{λx.a, ρ2} are derivable by the same proof, and ρ1 v ρ2. Similarly, 〈e, σ〉 c
∗→ v1

and 〈e, τ 〉 c
∗→ v2 are derivable by the same proof, and v1 v v2. It follows that

ρ1[y/v1] v ρ2[y/v2]. Again by the induction hypothesis, 〈a[x/y], ρ1[y/v1]〉 c
∗→ u1

and 〈a[x/y], ρ2[y/v2]〉 c
∗→ u2 are derivable by the same proof, and u1 v u2. 2

The following theorem establishes the soundness of closure conversion for cap-

sules.

Theorem 2.4.7 Eval(e, σ) exists if and only if Evalc(e, σ) does, and Evalc(e, σ) v

V (Eval(e, σ)). Moreover, they are derivable by isomorphic large-step proofs under

the obvious correspondence between the large-step rules of both systems.3

Proof. We proceed by induction on the proof tree under the large-step rules.

The proof is similar to the proof of Lemma 2.4.6. We write c
∗→ for the derivability

relation under the large-step rules (2.15)–(2.17) for closures to distinguish them from

the corresponding large-step rules (2.8)–(2.10) for capsules, which we continue to

denote by ∗→.

For the single-step rules (2.15), we have

Evalc(c, σ) = c = V (Eval(c, σ))

Evalc(λx.a, σ) = {λx.a, σ} = V (λx.a, σ) = V (Eval(λx.a, σ))

Evalc(y, σ) = σ(y) = V (σ(y), σ) = V (Eval(y, σ)).

The last line uses Lemma 2.4.4.

3For this purpose, the definition of V in (2.18) can be viewed as a pair of proof rules corre-

sponding to the first two rules of (2.15).

32

Consider the corresponding rules (2.9) and (2.16). A conclusion 〈d e, σ〉 c
∗→ f(c)

is derivable by an application of (2.16) iff 〈d, σ〉 c
∗→ f and 〈e, σ〉 c

∗→ c are derivable

by smaller proofs. Similarly, 〈d e, σ〉 ∗→ 〈f(c), ρ〉 is derivable by an application of

(2.9) iff 〈d, σ〉 ∗→ 〈f, σS〉 and 〈e, σS〉 ∗→ 〈c, σST 〉 are derivable by smaller proofs.

By the induction hypothesis, 〈d, σ〉 c
∗→ f = V (f, σS) and 〈d, σ〉 ∗→ 〈f, σS〉 are

derivable by isomorphic proofs. By Lemma 2.4.6, 〈e, σ〉 c
∗→ c and 〈e, σS〉 c

∗→ c are

derivable by the same proof. Again by the induction hypothesis, 〈e, σS〉 c
∗→ c and

〈e, σS〉 ∗→ 〈c, σST 〉 are derivable by isomorphic proofs, therefore so are 〈e, σ〉 c
∗→

c = V (c, σST) and 〈e, σS〉 ∗→ 〈c, σST 〉.

Finally, consider the corresponding rules (2.10) and (2.17). A conclusion 〈d e, σ〉 c
∗→

u is derivable by an application of (2.17) iff for some λx.a, ρ, and v,

〈d, σ〉 c
∗→ {λx.a, ρ} 〈e, σ〉 c

∗→ v 〈a[x/y], ρ[y/v]〉 c
∗→ u

are derivable by smaller proofs. Similarly, 〈d e, σ〉 ∗→ 〈t, τ〉 is derivable by an

application of (2.10) iff for some λz.b, S, T , and w,

〈d, σ〉 ∗→ 〈λz.b, σS〉 〈e, σS〉 ∗→ 〈w, σST 〉 〈b[z/y], σST [y/w]〉 ∗→ 〈t, τ〉

are derivable by smaller proofs.

By the induction hypothesis, 〈d, σ〉 c
∗→ {λx.a, ρ} and 〈d, σ〉 ∗→ 〈λz.b, σS〉 are

derivable by isomorphic proofs, and {λx.a, ρ} v V (λz.b, σS) = {λz.b, σS}, there-

fore λx.a = λz.b and ρ v σS v σST .

By Lemmas 2.4.3 and 2.4.6, for some v′, 〈e, σ〉 c
∗→ v and 〈e, σS〉 c

∗→ v′ are deriv-

able by the same proof, and v v v′. Again by the induction hypothesis, 〈e, σS〉 c
∗→ v′

and 〈e, σS〉 ∗→ 〈w, σST 〉 are derivable by isomorphic proofs, and v′ v V (w, σST).

By transitivity, 〈e, σ〉 c
∗→ v and 〈e, σS〉 ∗→ 〈w, σST 〉 are derivable by isomorphic

33

proofs, and v v V (w, σST). By Lemma 2.4.5,

ρ[y/v] v σST [y/V (w, σST)] v σST [y/w].

Again by Lemma 2.4.6, for some u′, 〈a[x/y], ρ[y/v]〉 c
∗→ u and 〈a[x/y], σST [y/w]〉 c

∗→

u′ are derivable by the same proof, and u v u′; and again by the induction hypoth-

esis, 〈a[x/y], σST [y/w]〉 c
∗→ u′ and 〈a[x/y], σST [y/w]〉 ∗→ 〈t, τ〉 are derivable by

isomorphic proofs, and u′ v V (t, τ). By transitivity, 〈a[x/y], ρ[y/v]〉 c
∗→ u and

〈a[x/y], σST [y/w]〉 c
∗→ 〈t, τ〉 are derivable by isomorphic proofs, and u v V (t, τ).

2

2.5 A Functional/Imperative Language

In this section we give an operational semantics for a simply-typed higher-order

functional and imperative language with mutable bindings. We thus fulfill the orig-

inal desire to provide a unified semantics for functional and imperative languages.

We might repeat some definitions as to have them all in a common place.

2.5.1 Expressions

Expressions Exp = {d, e, a, b, . . .} contain both functional and imperative features.

There is an unlimited supply of variables x, y, . . . of all (simple) types, as well as

constants f, c, . . . for primitive values. () is the only constant of type unit, and true

and false are the only two constants of type bool. In the examples, 0, 1, 2, . . . are

predefined constants of type int. In addition, there are functional features

• λ-abstraction λx.e

• application (d e),

34

imperative features

• assignment x := e

• composition d; e

• conditional if b then d else e

• while loop while b do e,

and syntactic sugars

• let x = d in e (λx.e) d

• let rec x = d in e let x = a in x := d; e

where a is any expression of the appropriate type. The technique for formation of

recursive functions in the last definition is known as Landin’s knot.

Let Var be the set of variables, Const the set of constants, and λ-Abs the set of

λ-abstractions. Given an expression e, let FV(e) denote the set of free variables of

e. Given a partial function h : Var ⇀ Var such that FV(e) ⊆ domh, let h(e) be the

expression e where every instance of a free variable x ∈ FV(e) has been replaced

by the variable h(x). h : Exp ⇀ Exp is the unique homomorphic extension of

h : Var ⇀ Var. Given two partial functions g and h, g ◦h denotes their composition:

g ◦ h(x) = g(h(x)). Given a function h, we write h[x/v] the function such that

h[x/v](y) = h(y) for y 6= x and h[x/v](x) = v. Given an expression e, we write

e[x/y] the expression e with y substituted for all free occurrences of x.

2.5.2 Types

Types α, β, . . . are ordinary simple types built inductively from an unspecified family

of base types, including at least unit and bool, and the usual function type construc-

35

tor →. All constants c of the language have a type type(c); by convention, we

use c for a constant of a base type and f for a constant of a functional type. We

follow [Win93] in assuming that each variable x is associated with a unique type

type(x), that could for example be built into the variable name. Γ is a type envi-

ronment, a partial function Var ⇀ Type. As is standard, we write Γ, x : α for the

typing environment Γ where x has been bound or rebound to α. The typing rules

are standard:

Γ ` c : α if type(c) = α Γ, x : α ` x : α
type(x) = α Γ, x : α ` e : β

Γ ` λx.e : α→ β

Γ ` d : α→ β Γ ` e : α

Γ ` (d e) : β

Γ ` x : α Γ ` e : α

Γ ` x := e : unit

Γ ` d : unit Γ ` e : α

Γ ` d; e : α

Γ ` b : bool Γ ` d : α Γ ` e : α

Γ ` if b then d else e : α

Γ ` b : bool Γ ` e : unit

Γ ` while b do e : unit

Henceforth all the expressions we consider will be assumed to be well-typed with

respect to these rules.

2.5.3 Small-Step Evaluation

Definitions

An expression is irreducible if it is either a constant or a λ-abstraction. Note

that variables are not irreducible. Let i, j, k, . . . denote irreducible expressions, and

Irred = Const + λ-Abs the set of irreducible expressions (These are often called val-

ues in the λ-calculus literature, but we avoid this terminology here because it is

misleading, as they are not values in the intuitive sense.)

The closure of a set A ⊆ dom γ with respect to γ, denoted clσ(A), is the smallest

set B containing A such that if x ∈ B then FV(γ(x)) ⊆ B. It is the domain of the

36

least-defined capsule environment whose domain contains A and that agrees with γ

on its domain.

The term α-conversion refers to the renaming of bound variables. With a capsule

〈e, γ〉, this can happen in two ways. The traditional form maps a subterm λx.d to

λy.d[x/y], provided y would not be captured in d. We call this α-conversion of the

first kind. One can also rename a variable x ∈ dom γ and all free occurrences of x

in e and γ(z) for z ∈ dom γ to y, provided y 6∈ dom γ already and y would not be

captured. We call this α-conversion of the second kind.

A capsule 〈e, γ〉 is irreducible if e is an irreducible expression. A capsule value is

the equivalence class of an irreducible capsule modulo bisimilarity and α-conversion;

equivalently, the λ-coterm represented by the capsule modulo α-conversion.

Small-step semantics

Capsules provide a particularly clean small-step semantics for the language studied

here. A program determines a binary relation on capsules. The functional features

are interpreted by the rules of §2.4.1, that we repeat here for completeness.

Let the operator →ca relate capsules. One rule of particular note is the assign-

ment rule

〈y := i, γ〉 →ca 〈(), γ[y/i]〉

The closure conditions on capsules ensure that y must already be bound in γ. The

variable y is rebound to the irreducible expression i. The semantics of other features

directly involving variables is given by:

〈x, γ〉 →ca 〈γ(x), γ〉 〈(λx.b) i, γ〉 →ca 〈b[x/y], γ[y/i]〉 (y fresh)

37

and the remaining semantics is:

〈f c, γ〉 →ca 〈f(c), γ〉 〈(); e, γ〉 →ca 〈e, γ〉

〈if true then d else e, γ〉 →ca 〈d, γ〉 〈if false then d else e, γ〉 →ca 〈e, γ〉

〈while b do e, γ〉 →ca 〈if b then (e;while b do e) else (), γ〉

Evaluation contexts C are defined by:

C ::= [·] | C e | i C | x := C | C; e | if C then d else e

where each evaluation context C[·] generates a rule:

〈d, γ〉 →ca 〈e, δ〉
〈C[d], γ〉 →ca 〈C[e], δ〉

These context rules define a standard shallow applicative-order (leftmost innermost,

call-by-value) evaluation strategy.

The reduction rules preserve types and cannot fail catastrophically. Thus every

computation either continues forever or terminates with a well-typed final capsule

〈i, σ〉, where i is irreducible.

The relation ∗→ca is the reflexive transitive closure of →ca. If d and e are closed

terms, we write d→ca e to mean 〈d, []〉 →ca 〈e, γ〉 for some γ, and d ∗→ca e to mean

〈d, []〉 ∗→ca 〈e, γ〉 for some γ.

Examples

The following examples show that lexical scoping and recursion are handled cor-

rectly. The complete derivation of each example is given in Appendix A.

Example 2.5.1 (let x = 1 in let f = λy.x in let x = 2 in f 0) ∗→ca 1 2

Example 2.5.2 (let x = 1 in let f = λy.x in x := 2; f 0) ∗→ca 2 2

38

Example 2.5.3 (let x = 1 in let f = (let x = 2 in λy.x) in f 0) ∗→ca 2 2

Example 2.5.4 (let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0) ∗→ca 2 2

Example 2.5.5 (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3) ∗→ca 6 2

2.5.4 Garbage Collection

During a computation, some variables can become superfluous, either because they

are out of scope or because they are not called later. In this section we show how

to garbage collect them.

A monomorphism h : 〈d, σ〉 → 〈e, τ〉 is an injective map h : domσ → dom τ

such that

• τ(h(x)) = h(σ(x)) for all x ∈ domσ, where h(e) = e[x/h(x)] (safe substitu-

tion); and

• h(d) = e.

The collection of monomorphic preimages of a given capsule contains an initial

object that is unique up to α-conversion. This is the garbage collected version of the

capsule.

There exists a simple garbage collection algorithm for a capsule 〈d, σ〉: starting

from expression d, collect all free variables appearing in d and mark them as used

in σ; also put those variables in a bag b. Then, for every variable x in the bag b,

collect all free variables y appearing in σ(x); if y is already marked as used in σ,

do nothing, otherwise mark y as used in σ and add it to b. Finish when there are

no more variables in b. Let σ′ be σ where we keep only the marked variables; then

〈d, σ′〉 is the garbage collected version of 〈d, σ〉.

39

2.5.5 Big-Step Evaluation

A big-step semantics is easier to relate to a semantics of closures, as we will see in

the next chapter. Let us thus define a big step semantics where the operator ⇓ca

relates capsules to irreducible capsules. The semantics of features directly involving

variables is given by:

〈x, γ〉⇓ca〈γ(x), γ〉 〈λx.e, γ〉⇓ca〈λx.e, γ〉
〈e, γ〉⇓ca〈j, ζ〉

〈x := e, γ〉⇓ca〈(), ζ[x/j]〉

〈d, γ〉⇓ca〈λx.a, ζ〉 〈e, ζ〉⇓ca〈j, η〉 〈a[x/y], η[y/j]〉⇓ca〈i, δ〉 (y fresh)
〈d e, γ〉⇓ca〈i, δ〉

and the remaining semantics is:

〈c, γ〉⇓ca〈c, γ〉
〈d, γ〉⇓ca〈f, ζ〉 〈e, ζ〉⇓ca〈c, δ〉

〈d e, γ〉⇓ca〈f(c), δ〉

〈d, γ〉⇓ca〈(), ζ〉 〈e, ζ〉⇓ca〈i, δ〉
〈d; e, γ〉⇓ca〈i, δ〉

〈b, γ〉⇓ca〈true, ζ〉 〈d, ζ〉⇓ca〈i, δ〉
〈if b then d else e, γ〉⇓ca〈i, δ〉

〈b, γ〉⇓ca〈false, ζ〉 〈e, ζ〉⇓ca〈i, δ〉
〈if b then d else e, γ〉⇓ca〈i, δ〉

〈b, γi〉⇓ca〈true, δi〉 〈e, δi〉⇓ca〈(), γi+1〉, 0 ≤ i < n, n ≥ 0

〈b, γn〉⇓ca〈false, δn〉
〈while b do e, γ0〉⇓ca〈(), δn〉

Property 2.5.6 If 〈d, γ〉⇓ca〈e, δ〉 then 〈e, δ〉 is an irreducible capsule.

Proof. By trivial structural induction on the derivation of 〈d, γ〉⇓ca〈e, δ〉. 2

If d is a closed term and i is an irreducible close term, we write d⇓cai to mean

〈d, []〉⇓ca〈i, γ〉 for some γ.

40

Examples

As expected, small-step and big-step semantics agree. Before proving it formally,

let us show it on a few examples:

Example 2.5.7 (let x = 1 in let f = λy.x in let x = 2 in f 0)⇓ca1 2

Example 2.5.8 (let x = 1 in let f = λy.x in x := 2; f 0)⇓ca2 2

Example 2.5.9 (let x = 1 in let f = (let x = 2 in λy.x) in f 0)⇓ca2 2

Example 2.5.10 (let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0)⇓ca2 2

Example 2.5.11 (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3)⇓ca6 2

Equivalence of big-step and small-step semantics

Theorem 2.5.12 For a capsule 〈e, γ〉 and an irreducible capsule 〈i, δ〉,

〈e, γ〉⇓ca〈i, δ〉 if and only if 〈e, γ〉 ∗→ca 〈i, δ〉

Proof. The direct implication is proved by a simple structural induction on the

big-step derivation of 〈e, γ〉⇓ca〈i, δ〉. The converse if proved by recurrence on the

number k of steps of the derivation of 〈e, γ〉 ∗→ca 〈i, δ〉, with base case for k = 1;

the case k = 0 is proved separately.

(⇒) If e is irreducible (a λ-abstraction λx.d or a constant c), then 〈e, γ〉 = 〈i, δ〉

and 〈e, γ〉 ∗→ca 〈i, δ〉 in zero step. If e is a variable x, i = γ(x), γ = δ, and

〈e, γ〉 →ca 〈γ(x), δ〉, thus 〈e, γ〉 ∗→ca 〈γ(x), δ〉 in one step. The other cases are

easily handled by structural induction on the big-step derivation of 〈e, γ〉⇓ca〈i, δ〉.

The case for the while loop involves a simple recurrence on the number of iterations

n.

41

(⇐) The proof is very similar. If e is irreducible, then 〈e, γ〉 ∗→ca 〈i, δ〉 was

performed in zero step, so 〈e, γ〉 = 〈i, δ〉 and 〈e, γ〉 ∗→ca 〈i, δ〉. If e is a variable

x, then 〈e, γ〉 ∗→ca 〈γ(x), δ〉 in one step and 〈e, γ〉⇓ca〈γ(x), δ〉. The other cases are

easily handled by case analysis on the first small-step of the derivation 〈e, γ〉 ∗→ca

〈i, δ〉. The case for the while loop involves a recurrence on the number of times the

small-step rule for the while loop is applied.

2

Corollary 2.5.13 If 〈d, γ〉⇓ca〈e, δ〉 then 〈d, γ〉 ∗→ca 〈e, δ〉

Proof. It is a direct consequence of property 2.5.6 and theorem 2.5.12. The

converse is not true; a counterexample is given by any 〈e, δ〉 not irreducible. 2

2.6 Conclusion

Capsules provide an algebraic representation of state for higher-order functional and

imperative programs. They are mathematically simpler than closures and correctly

model static scope without auxiliary data constructs, even in the presence of re-

cursion and mutable variables. Capsules form a natural coalgebraic extension of

the λ-calculus, and we have shown how coalgebraic techniques can be brought to

bear on arguments involving state. We have shown that capsule evaluation is faith-

ful to β-reduction with safe substitution in the λ-calculus. We have shown how to

closure-convert capsules, and we have proved soundness of the transformation in the

absence of assignments. Finally, we have shown how capsules can be used to give a

natural operational semantics to a higher-order functional and imperative language

with mutable bindings.

42

Capsules have also been used to model objects [Koz12]. In the next chapter, we

see how the relationship between capsules and closures established in Theorem 2.4.7

holds in the presence of assignment, after introducing appropriate extensions to the

definition of closure to allow indirection. In chapter 4 we provide a semantics for

separation logic using capsules.

Chapter 3

Capsules and Closures

This chapter precisely compares capsules and closures for a higher-order language

with mutable bindings. It provides two comparisons: a comparison based on big-

step semantics, which is simpler and thus allows us to see more easily how capsules

and closures precisely relate; and another comparison based on small-step semantics,

more complicated but ensuring soundness of capsules even for infinite computations.

3.1 Introduction

This chapter compares Capsules and Closures, including proofs of bisimilarity, in

the semantics of a higher-order programming language with mutable variables. In

proving soundness of one to the other, it gives a precise account of how capsule en-

vironments and closure environments relate to each other. It provides proofs both

using big-step semantics and small-step semantics. Big-step semantics are simpler

and thus allow to see more easily how capsules and closures precisely relate. How-

ever, while big-step semantics only allow to talk about final results of terminating

computations, the use of small-step semantics allows to prove a stronger bisimi-

43

44

larity involving every step of the computation and thus also applicable to infinite

computations.

The language used in this chapter was introduced in §2.5. It is both functional

and imperative: it has higher-order functions, but every variable is mutable. This

leads to interesting interactions and allows to go further than just enforcing lexical

scoping. In particular, what do we expect the result of an expression like (let x =

1 in let f = λy.x in x := 2; f 0) to be? Scheme (using set! for :=) and OCaml

(using references) answer 2. Capsules give a rigorous mathematical definition that

agrees and conservatively extends the scoping rules of the λ-calculus. Our semantics

of closures also agrees with this definition, but this requires introducing a level of

indirection, with both a stack of environments and a store, à la ML. Finally, recursive

definitions are often implemented using some sort of back-patching; we build this

directly into the definition of the language by defining let rec x = d in e as a syntactic

sugar for let x = a in x := d; e, where a is any expression of the appropriate type.

This chapter is organized as follows. In §3.2, we describe a semantics based on

closures for this language, which is an alternative to the capsule-based semantics

presented in §2.5. In §3.3, we show a very strong correspondence (Theorem 3.3.5 in

big-step and corollary 3.3.13 in small-step) between the two semantics, showing that

every computation in the semantics of capsules is bisimilar to a computation in the

semantics of closures, and vice-versa. In §3.4, we show (Propositions 3.4.1–3.4.4)

that closure semantics retains some unnecessary information that capsule semantics

omits, attesting of the simplicity of capsules. We finish with a discussion in §3.5.

45

3.2 Closure semantics

In this section we present a big-step semantics and a small-step semantics on clo-

sures. The semantics on closures is the semantics usually used and taught for func-

tional languages. A level of indirection for variables has been added to support

imperative features, à la ML. The big-step semantics is simpler, but does not say

anything about nonterminating computation. The small-step semantics, while more

complicated, allows to reason about infinite traces.

All the expressions we consider in this section are supposed well-typed with the

rules of §2.5.2.

3.2.1 Definitions

Closures were introduced in the language Scheme [SS98]. We present a version of

them using a level of indirection, allowing us to handle mutable variables. For clarity

purposes, we repeat a few definitions here.

There is an unlimited number of locations `, `1, `2 . . .; locations can be thought

of as addresses in memory. An environment is a partial function from variables to

locations. A closure is defined as a pair {λx.e, σ} such that FV(λx.e) ⊆ domσ,

where λx.e is a λ-abstraction and σ is an environment that is used to interpret the

free variables of λx.e. A value is either a constant or a closure. Values for closures

play the same role as irreducible terms for capsules. A store (or memory) is a partial

function from locations to values.

Let u, v, w, . . . denote values, σ, τ, . . . environments and µ, ν, ξ, χ, . . . stores. Let

Val be the set of values, Loc the set of locations and Cl the set of closures. Thus we

46

have:

σ : Var ⇀ Loc µ : Loc⇀ Val Val = Const + Cl

3.2.2 Big-step

Semantics

A state is a triple 〈e, σ, µ〉. A state is valid if and only if

FV(e) ⊆ domσ codomσ ⊆ domµ

∀{λx.a, τ} ∈ codomµ, FV(λx.a) ⊆ dom τ ∧ codom τ ⊆ domµ

A result is a pair (v, µ). A result is valid if and only if either v ∈ Const, or

v = {λx.a, τ} ∈ Cl and the triple 〈λx.a, τ, µ〉 is valid. We only consider valid states

and results. Let us define a big step semantics where the operator ⇓cl relates valid

states to valid results. The semantics of features directly involving variables is given

by:

〈x, σ, µ〉⇓cl(µ(σ(x)), µ) 〈λx.e, σ, µ〉⇓cl({λx.e, σ}, µ)

〈e, σ, µ〉⇓cl(v, ξ)
〈x := e, σ, µ〉⇓cl((), ξ[σ(x)/v])

〈d, σ, µ〉⇓cl({λx.a, τ}, ξ) 〈e, σ, ξ〉⇓cl(v, χ)

〈a, τ [x/`], χ[`/v]〉⇓cl(u, ν)
(` fresh)

〈d e, σ, µ〉⇓cl(u, ν)

and the remaining semantics is:

〈c, σ, µ〉⇓cl(c, µ)
〈d, σ, µ〉⇓cl(f, ξ) 〈e, σ, ξ〉⇓cl(c, ν)

〈d e, σ, µ〉⇓cl(f(c), ν)

47

〈d, σ, µ〉⇓cl((), ξ) 〈e, σ, ξ〉⇓cl(u, ν)

〈d; e, σ, µ〉⇓cl(u, ν)

〈b, σ, µ〉⇓cl(true, ξ) 〈d, σ, ξ〉⇓cl(u, ν)

〈if b then d else e, σ, µ〉⇓cl(u, ν)

〈b, σ, µ〉⇓cl(false, ξ) 〈e, σ, ξ〉⇓cl(u, ν)

〈if b then d else e, σ, µ〉⇓cl(u, ν)

〈b, σ, µi〉⇓cl(true, νi) 〈e, σ, νi〉⇓cl((), µi+1), 0 ≤ i < n, n ≥ 0

〈b, σ, µn〉⇓cl(false, νn)

〈while b do e, σ, µ0〉⇓cl((), νn)

Examples

Example 3.2.1 (let x = 1 in let f = λy.x in let x = 2 in f 0)⇓cl1 2

Example 3.2.2 (let x = 1 in let f = λy.x in x := 2; f 0)⇓cl2 2

Example 3.2.3 (let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0)⇓cl2 2

Example 3.2.4 (let rec f = λn.if n = 0 then 1 else n× f(n− 1) in f 3)⇓cl6 2

3.2.3 Small-step

A first try

At first, it seems that a small-step semantics for closures should not be much more

complicated than its big-step counterpart. However some issue arises on the rule for

the application (d e) when d has already been reduced to a λ-term and e to a value.

Using closures, we are trying to take the next small step in the state

〈{λx.a, τ} v, σ, µ〉. We would like to write something like:

〈{λx.a, τ} v, σ, µ〉 →cl 〈a, τ [x/`], µ[`/v]〉 (` fresh)

48

This rule is wrong: it drops the environment σ, but when this evaluation is in

context, σ has to come back once we finish evaluating a. One solution is to write a

rule involving several small steps, which is really a big step rule. Another solution

is to keep track of the whole stack of environments to come back to the previous

environment each time we get out of a scope: this is what we do next.

Using capsules however, the following rule comes very naturally:

〈(λx.a) i, γ〉 →ca 〈a[x/y], γ[y/i]〉 (y fresh)

Along with the other small-step rules, this shows that the capsule semantics is fully

relational and does not need any stack or auxiliary data structure.

Environment stacks

The interaction of small-step semantics and closures leads to using stacks of envi-

ronments: when entering the body of a function, the environment coming with its

closure is pushed; and when leaving this body, it is popped. Let Σ,Π, . . . denote

stacks of environments. Let us write [σ] the stack of environments containing only

the element σ, as to not confuse it with the single environment σ. σ :: τ represents

the stack containing σ at the top of the stack and τ at its bottom. σ :: Σ represents

the stack Σ with σ added on top of it; and Σ :: σ represents Σ with σ added at its

bottom. We define hd(Σ) = σ and tl(Σ) = Π whenever Σ = σ :: Π.

State expressions

To define a small-step semantics of closures, we need to represent all the different

shapes an expression can take throughout computation, until it becomes a value.

State expressions StExp = {s, t, . . .} allow to do this. Of course, expressions and

49

values are state expressions, but some state expressions are neither.

Exp ⊆ StExp Val ⊆ StExp

A state expression can be:

• an expression e; this includes constants c;

• a closure {λx.a, σ};

• a state expression followed by a pop indicator �, as in s �; when entering

the body of a function, a new environment needs to be pushed on the stack of

environments; this environment needs to be popped when leaving the body of

the function; one way to know when this happens is to keep track of the end

of the body with �;

• a state expression applied to an expression, s e;

• a value applied to a state expression, v s;

• an assignment, x := s;

• a composition s; e;

• an if statement if s then d else e.

We extend the notion of free variables to a state expression in a natural, syntactic

way: for a well-formed closure {λx.a, σ} with FV(λx.a) ⊆ domσ, FV({λx.a, σ}) is

the empty set; and FV(s �) = FV(s).

Stacks of environments, along with the introduction of closures and of the pop

indicator �, are a convenient way to model in which environment each variable

should be looked up. Intuitively, any free variable in a λ-abstraction of a closure

50

should be interpreted in the environment coming with this closure. Because of the

definition of state expressions, the pop indicators all are inside each other. The

variables inside the deepest pop indicator are interpreted in the environment on

top the stack; the variables inside the second deepest but outside the deepest pop

indicator are interpreted in the second environment from the top of the stack, and

so on. The variables outside of any pop indicator are interpreted in the environment

at the bottom of the stack. A precise account of this idea will be given in §3.3.1

with the definition of h ◦ Σ.

Semantics

A state is a triple 〈s, Σ, µ〉.

FV(s) ⊆ dom (hdΣ) ∀σ ∈ Σ, codomσ ⊆ domµ

∀{λx.a, τ} ∈ codomµ, FV(λx.a) ⊆ dom τ ∧ codom τ ⊆ domµ

When evaluating an expression e, we start with the initial state 〈e, [σ], µ〉 where

σ and µ are both empty mappings. Let us define a small step semantics where the

operator →cl relates valid states to valid results. The semantics of features directly

involving variables is given by:

〈x, [σ], µ〉 →cl 〈µ(σ(x)), [σ], µ〉 〈λx.a, [σ], µ〉 →cl 〈{λx.a, σ}, [σ], µ〉

〈{λx.a, σ} v, [τ], µ〉 →cl 〈a �, σ[x/`] :: τ, µ[`/v]〉 (` fresh)

〈v �, σ :: τ, µ〉 →cl 〈v, [τ], µ〉 〈x := v, [σ], µ〉 →cl 〈(), [σ], µ[σ(x)/v]〉

and the remaining semantics is:

〈f c, [σ], µ〉 →cl 〈f(c), [σ], µ〉 〈(); e, [σ], µ〉 →cl 〈e, [σ], µ〉

〈if true then d else e, [σ], µ〉 →cl 〈d, [σ], µ〉

51

〈if false then d else e, [σ], µ〉 →cl 〈e, [σ], µ〉

〈while b do e, [σ], µ〉 →cl 〈if b then (e;while b do e) else (), [σ], µ〉

Evaluation contexts C are defined by:

C ::= [·] | C e | v C | x := C | C; e | if C then d else e

where each evaluation context C[·] generates a rule:

〈s, Σ, µ〉 →cl 〈t, Π, ν〉
〈C[s], Σ, µ〉 →cl 〈C[t], Π, ν〉

One more rule is needed to be able to evaluate under a pop indicator �:

〈s, Σ, µ〉 →cl 〈t, Π, ν〉
〈s �, Σ :: σ, µ〉 →cl 〈t �, Π :: σ, ν〉

Note the similarity between the last two rules, including the definition of eval-

uation contexts, and the inductive definition of state environments. This is not by

chance: the innermost state expression, if not a value, is always the one which will

be evaluated next.

The final states, i.e., the states that cannot take a small step, are the (v,Σ, µ)

for any value v.

As usual, we introduce ∗→cl as the reflexive transitive closure of →cl.

Properties

Some properties of this semantics can be easily proved:

• In a state expression s, all the pop indicators � are inside each other; the

deepest one is inside all the others, and so on.

• If starting from an initial state, the number of elements on the environment

stack Σ is always one more than the number of pop indicators � in s.

• if Σ→cl Π then either Σ = Π or Σ = σ :: Π or σ :: Σ = Π for some σ.

52

Examples

To illustrate the above semantics, we now show the evaluation of the examples of

§2.5.3 using closures. The complete derivation of each example is given in Ap-

pendix A.

Example 3.2.5 (let x = 1 in let f = λy.x in let x = 2 in f 0) ∗→cl 1 2

Example 3.2.6 (let x = 1 in let f = λy.x in x := 2; f 0) ∗→cl 2 2

This final example is particularly interesting as it shows how nested � allow

to interpret the same variable in different scopes. In all the example e stands for

{λn.if n = 0 then 1 else f(n − 1) × n, [f = `1]}, and d stands for {λn.n, []}, a

dummy value used when creating the recursive function f .

Example 3.2.7 (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3) ∗→cl 6 2

3.3 Equivalence of the semantics

3.3.1 Definitions

There is a very strong correspondence between the semantics of closures and cap-

sules, both in small steps and in big steps. To give a precise account of this corre-

spondence, we introduce an injective partial function h : Loc ⇀ Var with which we

define five relations. Each relation is between an element of the semantics of closures

and an element of the semantics of capsules that play similar roles. Relations 1 to 4

below are relevant for comparing big-step semantics, while relations 1, 2 and 5 are

relevant for comparing small-step semantics:

1. v
h→ i between values and irreducible terms;

53

2. µ
h→ γ between stores and capsule environments;

3. 〈d, σ, µ〉 h∼ 〈e, γ〉 between big-step states and capsules;

4. (v, µ)
h∼ 〈i, γ〉 between results and irreducible capsules;

5. 〈s, Σ, µ〉 h∼ 〈e, γ〉 between small-step states and capsules.

One thing to notice is that nothing in the semantics of capsules plays the same

role as the environment σ in the big-step semantics of closures, or the environment

stack Σ in their small-step semantics: capsule environments γ relate to memories

µ, and environments σ have been simplified. Let us now give precise definitions of

those relations.

Definition 3.3.1 Given a value v and an irreducible term i, we say that h trans-

forms v into i, where h is an injective map h : Loc ⇀ Var, and we write v
h→ i, if

and only if:

• v = i when v ∈ Const, or

• codom τ ⊆ domh and (h ◦ τ)(λx.a) = i when v = {λx.a, τ} ∈ Cl

2

Definition 3.3.2 Given a store µ and a capsule environment γ, we say that h

transforms µ into γ, where h is an injective map h : Loc ⇀ Var, and we write

µ
h→ γ, if and only if:

domh = domµ h(domµ) = dom γ

∀` ∈ domµ, µ(`)
h→ γ(h(`))

2

54

Throughout this section, we focus on the features directly involving variables:

variable calls x, λ-abstractions λx.e, applications (d e) where d reduces to a λ-

abstraction, and assignment x := e. Most differences between capsules and closures

arise when using these features.

3.3.2 Big-step

Before proceeding to the equivalence of big-step semantics, we need a few more

definitions that are specific to the big-step case.

Definition 3.3.3 Given a state 〈d, σ, µ〉 and a capsule 〈e, γ〉, both valid, we say

that they are bisimilar under h, where h is an injective map h : Loc⇀ Var, and we

write 〈d, σ, µ〉 h∼ 〈e, γ〉, if and only if

(h ◦ σ)(d) = e µ
h→ γ

2

Definition 3.3.4 Given a result (v, µ) and an irreducible capsule 〈i, γ〉, both valid,

we say that they are bisimilar under h, where h is an injective map h : Loc ⇀ Var,

and we write (v, µ)
h∼ 〈i, γ〉 if and only if:

v
h→ i µ

h→ γ

2

Now that we know how to relate each element of both semantics, theorem 3.3.5

shows that any derivation using capsules mirrors a derivation using closures, and

vice-versa:

55

Theorem 3.3.5 If 〈d, σ, µ〉 h∼ 〈e, γ〉 then 〈d, σ, µ〉⇓cl(u, ν) for some u, ν if and

only if 〈e, γ〉⇓ca〈i, δ〉 for some i, δ, and in that case we have

(u, ν)
g∼ 〈i, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Proof. We show the direct implication by induction on the big-step derivation

of 〈d, σ, µ〉⇓cl(u, ν) and the converse by induction on the big-step derivation of

〈e, γ〉⇓ca〈i, δ〉.

We show the most interesting cases of the induction first: variable x, λ-abstraction

λx.e, function application of a λ-abstraction d e where d reduces to a λ-abstraction,

and variable assignment x := e. In all these cases, both implications are very sim-

ilar proofs. We then proceed to the other cases, constant c, function application

of a constant function d e where d reduces to a constant f , composition d; e, if

conditional if b then d else e and while loop while b do e.

Variable If d = x for some variable x then e = (h ◦ σ)(d) = y with y the variable

such that y = (h ◦ σ)(x).

(⇒) By definition of ⇓cl, (u, ν) = (µ(σ(x)), µ), and by definition of ⇓ca, 〈e, γ〉 =

〈y, γ〉⇓ca〈γ(y), γ〉. Moreover µ
h→ γ, therefore by definition of

h→, µ(σ(x))
h→

γ(h(σ(x))) = γ(y). Therefore, with g = h, (u, ν) = (µ(σ(x)), µ)
g∼ 〈γ(y), γ〉

which completes this case.

(⇐) The converse is similar. By definition of ⇓ca, 〈i, δ〉 = 〈γ(y), γ〉, and by

definition of ⇓cl, 〈d, σ, µ〉 = 〈x, σ, µ〉⇓cl(µ(σ(x)), µ). Moreover µ
h→ γ, there-

fore by definition of
h→, µ(σ(x))

h→ γ(h(σ(x))) = γ(y). Therefore, with g = h,

(µ(σ(x)), µ)
g∼ 〈γ(y), γ〉 = 〈i, δ〉 which completes this case.

56

λ-Abstraction If d = λx.a, then e = (h ◦ σ)(λx.a) which is a term α-equivalent

to d, so e = λx.b for some b. Indeed, the variable x does not change from d to e

since only the free variables of d are affected by h ◦ σ.

(⇒) By definition of ⇓cl, (u, ν) = ({λx.a, σ}, µ), and by definition of ⇓ca,

〈e, γ〉 = 〈λx.b, γ〉⇓ca〈λx.b, γ〉. But codomσ ⊆ domh and λx.b = (h ◦ σ)(λx.a),

therefore {λx.a, σ} h→ λx.b. Moreover we know µ
h→ γ and with g = h, we get

({λx.a, σ}, µ)
g∼ 〈λx.b, γ〉 which completes this case.

(⇐) The converse is similar. By definition of ⇓ca, 〈i, δ〉 = 〈λx.b, γ〉, and by

definition of ⇓cl, 〈d, σ, µ〉 = 〈λx.a, σ, µ〉⇓cl({λx.a, σ}, µ). But codomσ ⊆ domh

and λx.b = (h ◦ σ)(λx.a), therefore {λx.a, σ} h→ λx.b. Moreover we know µ
h→ γ

and with g = h, we get ({λx.a, σ}, µ)
g∼ 〈λx.b, γ〉 which completes this case.

Function application of a λ-abstraction If d = d1 d2, then let e1 = (h ◦σ)(d1)

and e2 = (h◦σ)(d2). Since e = (h◦σ)(d) means that e is α-equivalent to d, e = e1 e2,

and we can easily check that 〈d1, σ, µ〉
h∼ 〈e1, γ〉 and 〈d2, σ, µ〉

h∼ 〈e2, γ〉.

(⇒) If 〈d1 d2, σ, µ〉⇓cl(u, ν) because

〈d1, σ, µ〉⇓cl({λx.a, τ}, ξ) 〈d2, σ, ξ〉⇓cl(v, χ) 〈a, τ [x/`], χ[`/v]〉⇓cl(u, ν)

with ` fresh, then by induction hypothesis on the derivation of d1, there exist k, ζ

and h1 an extension of h such that

〈e1, γ〉⇓ca〈k, ζ〉 ({λx.a, τ}, ξ) h1∼ 〈k, ζ〉

The second condition implies that k = λx.b = (h1 ◦ τ)(λx.a) for some expression b,

and that ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2, therefore 〈d2, σ, ξ〉

h1∼ 〈e2, ζ〉. By

induction hypothesis on the derivation of d2, there exist j, η and h2 an extension of

57

h1 such that

〈e2, ζ〉⇓ca〈j, η〉 (v, χ)
h2∼ 〈j, η〉

As ` is the fresh location chosen in the derivation of ⇓cl for d, let y be a fresh variable

for the derivation of ⇓ca for e. Let h3 : Loc⇀ Var such that:

h3 : domh2 ∪ {`} → codomh2 ∪ {y}

`2 ∈ domh2 7→ h2(`2)

` 7→ y

Lemma 3.3.6 With the variables defined as above,

〈a, τ [x/`], χ[`/v]〉 h3∼ (b[x/y], η[y/j])

Proof. First of all, λx.b = (h1◦τ)(λx.a), h3 is an extension of h1 and FV(λx.a) ⊆

domh1, therefore λx.b = (h3 ◦ τ)(λx.a). Now b[x/y] = ((h3 ◦ τ)[x/y])(λx.a) =

(h3 ◦ τ [x/`])(λx.a) since h3(`) = y.

We further need to argue that χ[`/v]
h3→ η[y/j]. We already know that domh3 =

domh2 ∪ {`} = domχ ∪ {`} = domχ[`/v], and h3(domχ[`/v]) = codomh2 ∪

{y} = dom η[y/j]. Let `3 ∈ domχ[`/v]. If `3 ∈ domχ, then χ[`/v](`3) = χ(`3)
h2→

η(h3(`3)) = η[y/j](h3(`3)) by injectivity of h3, therefore χ[`/v](`3)
h3→ η[y/j](h3(`3)).

Otherwise, `3 = ` and then χ[`/v](`) = v
h2→ j = η[y/j](y) = η[y/j](h3(`)), therefore

since h3 is an extension of h2, χ[`/v](`)
h3→ η[y/j](h3(`)). This completes the proof

of the lemma. 2

Using lemma 3.3.14 and by induction hypothesis on the derivation of a, there

exist i, δ and g an extension of h3 such that

〈b[x/y], η[y/j]〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

58

Therefore, by definition of ⇓cl, 〈e1 e2, γ〉⇓ca〈i, δ〉 and (u, ν)
g∼ 〈i, δ〉, which com-

pletes this case.

(⇐) The converse is similar. If 〈e1 e2, γ〉⇓cl〈i, δ〉 because

〈e1, γ〉⇓ca〈λx.b, ζ〉 〈e2, ζ〉⇓ca〈j, η〉 〈b[x/y], η[y/j]〉⇓ca〈i, δ〉

with y fresh, then by induction hypothesis on the derivation of e1, there exist w, ξ

and h1 an extension of h such that

〈d1, σ, µ〉⇓ca(w, ξ) (w, ξ)
h1∼ 〈λx.b, ζ〉

The second condition implies that w = {λx.a, τ} for some a, τ such that (h1 ◦

τ)(λx.a) = λx.b, and that ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2, therefore

〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of e2, there exist v, χ

and h2 an extension of h1 such that

〈d2, σ, ξ〉⇓ca(v, χ) (j, η)
h2∼ (v, χ)

As y is the fresh variable chosen in the derivation of ⇓ca for e, let ` be a fresh location

for the derivation of ⇓cl for d. Let h3 : Loc⇀ Var such that:

h3 : domh2 ∪ {`} → codomh2 ∪ {y}

`2 ∈ domh2 7→ h2(`2)

` 7→ y

Lemma 3.3.7 With the variables defined as above,

〈a, τ [x/`], χ[`/v]〉 h3∼ (b[x/y], η[y/j])

Proof. This is the same as lemma 3.3.6, and the same proof holds. 2

59

Using lemma 3.3.7 and by induction hypothesis on the derivation of b[x/y], there

exist u, ν and g an extension of h3 such that

〈a, τ [x/`], χ[`/v]〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓cl,

〈d1 d2, σ, µ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

which completes this case.

Variable assignment If d = (x := d1) for some variable x and expression d1,

then e = (h ◦ σ)(x := d1) = (y := e1) with y a variable such that y = (h ◦ σ)(x) and

e1 = (h ◦ σ)(d1). Therefore 〈d1, σ, µ〉
h∼ 〈e1, γ〉.

(⇒) The derivation of ⇓cl for d shows that (u, ν) = ((), ξ[σ(x)/v]) for some v, ξ

such that

〈e1, σ, µ〉⇓cl(v, ξ)

By induction hypothesis on the derivation of ⇓cl for d1, there exist j, ζ and g an

extension of h such that

〈e1, γ〉⇓ca〈j, ζ〉 (v, ξ)
g∼ 〈j, ζ〉

Lemma 3.3.8 With the variables defined as above,

((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉

Proof. The domain conditions are fulfilled since (v, ξ)
g∼ 〈j, ζ〉, dom ξ = dom ξ[σ(x)/v]

and dom ζ = dom ζ[y/j]. Let ` ∈ dom ξ[σ(x)/v] = dom ξ. If ` = σ(x) then

60

ξ[σ(x)/v](`) = v
g∼ j = ζ[y/j](y) = ζ[y/j](g(`)) since g(`) = (g◦σ)(x) = (h◦σ)(x) =

y. Otherwise ξ[σ(x)/v](`) = ξ(`)
g∼ ζ(h(`)) = ζ[y/j](g(`)) using that h is injective

and g is an extension of h. Finally ()
g→ (), which completes the proof of the lemma.

2

Using lemma 3.3.15 and by definition of ⇓ca, 〈x := e1, γ〉⇓ca〈(), ζ[y/j]〉 and 〈u, ν〉 =

((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉, which completes this case.

(⇐) The converse is similar. The derivation of ⇓ca for e shows that 〈i, δ〉 =

〈(), ζ[x/j]〉 for some j, ζ such that

〈e1, σ, µ〉⇓cl(v, ξ)

By induction hypothesis on the derivation of ⇓ca for e1, there exists v, ξ and g an

extension of h such that

〈d1, σ, µ〉⇓ca〈v, ξ〉 (v, ξ)
g∼ 〈j, ζ〉

Lemma 3.3.9 With the variables defined as above,

((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉

Proof. This is the same as lemma 3.3.8, and the same proof holds. 2

Using lemma 3.3.9 and by definition of ⇓ca,

〈x := d1, σ, µ〉⇓cl((), ξ[σ(x)/v]) ((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉 = 〈i, δ〉

which completes this case.

The other cases are less interesting but we provide them here for completeness.

61

Constant If d = c then e = (h ◦ σ)(d) = c as well.

(⇒) The derivation of ⇓cl shows that (u, ν) = (c, µ), and the derivation of

⇓ca shows that 〈e, γ〉 = 〈c, γ〉⇓ca〈c, γ〉. Moreover µ
h→ γ, therefore with g = h,

(c, µ)
g∼ 〈c, γ〉 which completes this case.

(⇐) The derivation of ⇓ca shows that 〈i, δ〉 = 〈c, γ〉, and the derivation of ⇓ca

shows that 〈d, σ, µ〉 = 〈c, σ, µ〉⇓cl(c, µ). Moreover µ
h→ γ, therefore with g = h,

(c, µ)
g∼ 〈c, γ〉 which completes this case.

Function application of a constant function (⇒) If 〈d1 d2, σ, µ〉⇓cl(u, ν) be-

cause

〈d1, σ, µ〉⇓cl(f, ξ) 〈d2, σ, ξ〉⇓cl(c, ν) u = f(c)

then, recalling that 〈d1, σ, µ〉
h∼ (e1, γ), by induction hypothesis on the derivation

of d1, there exist j, ζ and h1 an extension of h such that

〈e1, γ〉⇓ca〈j, ζ〉 (f, ξ)
h1∼ 〈j, ζ〉

The second condition implies j = f and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2,

therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of d2, there

exist k, δ and g an extension of h1 such that

〈e2, ζ〉⇓ca〈k, δ〉 (c, ν)
g∼ 〈k, δ〉

The second condition implies k = c and ν
g→ δ. Therefore, by definition of ⇓ca,

〈e1 e2, γ〉⇓ca〈f(c), δ〉 (f(c), ν)
g∼ 〈f(c), δ〉

which completes this case.

(⇐) If 〈e1 e2, γ〉⇓ca〈i, δ〉 because

〈e1, γ〉⇓cl〈f, ζ〉 〈e2, ζ〉⇓cl〈c, δ〉 u = f(c)

62

then, recalling that 〈d1, σ, µ〉
h∼ (e1, γ), by induction hypothesis on the derivation

of e1, there exist v, ξ and h1 an extension of h such that

〈d1, σ, µ〉⇓cl(v, ξ) (v, ξ)
h1∼ 〈f, ζ〉

The second condition implies v = f and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2,

therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of e2, there

exist w, ν and g an extension of h1 such that

〈d2, σ, ξ〉⇓ca(w, ν) (w, ν)
g∼ 〈c, δ〉

The second condition implies w = c and ν
g→ δ. Therefore, by definition of ⇓ca,

〈d1 d2, σ, µ〉⇓ca〈f(c), δ〉 (f(c), ν)
g∼ 〈f(c), δ〉

which completes this case.

Composition If d = (d1; d2), then e = (e1; e2) for e1 = (h ◦ σ)(d1) and e2 =

(h ◦ σ)(d2), therefore 〈d1, σ, µ〉
h∼ 〈e1, γ〉 and 〈d2, σ, µ〉

h∼ 〈e2, γ〉.

(⇐) The derivation of ⇓cl for d shows that

〈d1, σ, µ〉⇓cl((), ξ) 〈d2, σ, ξ〉⇓cl(u, ν)

for some ξ. By induction hypothesis on the derivation of d1, there exist j, ζ and h1

an extension of h such that

〈e1, γ〉⇓ca〈j, ζ〉 ((), ξ)
h1∼ 〈j, ζ〉

The second condition implies j = () and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2,

therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of d2, there

exist i, δ and g an extension of h1 such that

〈e2, ζ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

63

Therefore, by definition of ⇓ca,

〈e1; e2, γ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

which completes this case.

(⇒) The derivation of ⇓ca for e shows that

〈e1, γ〉⇓ca〈(), ζ〉 〈e2, ζ〉⇓ca〈i, δ〉

for some ζ. By induction hypothesis on the derivation of e1, there exist v, ξ and h1

an extension of h such that

〈d1, σ, µ〉⇓cl(v, ξ) (v, ξ)
h1∼ 〈j, ζ〉

The second condition implies v = () and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2,

therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of e2, there

exist u, ν and g an extension of h1 such that

〈d2, σ, ξ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓cl,

〈d1; d2, σ〉µ⇓ca(u, ν) (u, ν)
g∼ 〈i, δ〉

which completes this case.

Conditional If d = (if a then d1 else d2), then e = (if b then e1 else e2) for

b = (h ◦ σ)(a), e1 = (h ◦ σ)(d1) and e2 = (h ◦ σ)(d2), therefore 〈a, σ, µ〉 h∼ 〈b, γ〉,

〈d1, σ, µ〉
h∼ 〈e1, γ〉 and 〈d2, σ, µ〉

h∼ 〈e2, γ〉.

(⇐) The derivation of ⇓cl for d shows that either

〈a, σ, µ〉⇓cl(true, ξ) 〈d1, σ, ξ〉⇓cl(u, ν)

64

or

〈a, σ, µ〉⇓cl(false, ξ) 〈d2, σ, ξ〉⇓cl(u, ν)

For some ξ. Let us consider the case where 〈a, σ, µ〉⇓cl(true, ξ); the other case has

a very similar proof. By induction hypothesis on the derivation of a, there exist j, ζ

and h1 an extension of h such that

〈b, γ〉⇓ca〈j, ζ〉 (true, ξ)
h1∼ 〈j, ζ〉

The second condition implies j = true and ξ
h1→ ζ. Moreover d1

h1→ e1 since d1
h→ e1,

therefore 〈d1, σ, ξ〉
h1∼ 〈e1, ζ〉. By induction hypothesis on the derivation of d1, there

exist i, δ and g an extension of h1 such that

〈e1, ζ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓ca,

〈if b then e1 else e2, γ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

which completes this case.

(⇒) The derivation of ⇓ca for e shows that either

〈b, γ〉⇓ca〈true, ζ〉 〈e1, ζ〉⇓ca〈i, δ〉

or

〈b, γ〉⇓ca〈false, ζ〉 〈e2, ζ〉⇓ca〈i, δ〉

For some ζ. Let us consider the case where 〈b, γ〉⇓ca〈true, ζ〉; the other case has a

very similar proof. By induction hypothesis on the derivation of b, there exist v, ξ

and h1 an extension of h such that

〈a, σ, µ〉⇓cl(v, ξ) (v, ξ)
h1∼ 〈j, ζ〉

65

The second condition implies v = true and ξ
h1→ ζ. Moreover d1

h1→ e1 since d1
h→ e1,

therefore 〈d1, σ, ξ〉
h1∼ 〈e1, ζ〉. By induction hypothesis on the derivation of e1, there

exist u, ν and g an extension of h1 such that

〈d1, σ, ξ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓cl,

〈if a then d1 else d2, σ, µ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

which completes this case.

Loop If d = (while a do d1), then e = (while b do e1) for b = (h ◦ σ)(a) and

e1 = (h ◦ σ)(d1), therefore 〈a, σ, µ〉 h∼ 〈b, γ〉 and 〈d1, σ, µ〉
h∼ 〈e1, γ〉. Let µ0 = µ,

γ0 = γ and h0 = h.

(⇒) Let νn = ν. The derivation of ⇓cl for d shows that

〈a, σ, µi〉⇓cl(true, νi) 〈d1, σ, νi〉⇓cl((), µi+1), 0 ≤ i < n

〈a, σ, µn〉⇓cl(false, νn) u = ()

for some n ≥ 0, µ1, . . . , µn, ν0, . . . , νn−1. Let us prove by recurrence on 0 ≤ i < n

that there exists hi, γi such that 〈a, σ, µi〉
hi∼ 〈b, γi〉 and 〈d1, σ, µi〉

hi∼ 〈e1, γi〉. The

result is already true for i = 0, let us suppose it is true for 0 ≤ i < n. By

induction hypothesis on the derivation 〈a, σ, µi〉⇓cl(true, νi), there exist ji, δi and gi

an extension of hi such that

〈b, γi〉⇓ca〈ji, δi〉 (true, νi)
h1∼ 〈ji, δi〉

The second condition implies ji = true and νi
gi→ δi. Moreover d1

gi→ e1 since

d1
hi→ e1, therefore 〈d1, σ, νi〉

gi∼ 〈e1, δi〉. By induction hypothesis on the derivation

66

〈d1, σ, νi〉⇓cl((), µi+1), there exist ki, γi+1 and hi+1 an extension of gi such that

〈e1, δi〉⇓ca〈ki, γi+1〉 ((), µi+1)
hi+1∼ 〈ki, γi+1〉

The second condition implies ki = () and µi+1
hi+1→ γi+1. Moreover a

hi+1→ b since a
hi→ b

and d1
hi+1→ e1 since d1

gi→ e1, therefore 〈a, σ, µi+1〉
hi+1∼ 〈b, γi+1〉 and 〈d1, σ, µi+1〉

hi+1∼

〈e1, γi+1〉. This completes the recurrence. In particular, for i = n− 1, 〈a, σ, µn〉
hn∼

〈b, γn〉. By induction hypothesis on the derivation 〈a, σ, µn〉⇓cl(false, νn), there exist

jn, δn and g an extension of hn such that

〈b, γn〉⇓ca〈jn, δn〉 (false, νn)
g∼ 〈jn, δn〉

The second condition implies jn = false, therefore by definition of ⇓ca,

〈while b do e1, γ0〉⇓ca〈(), δn〉 (u, ν) = ((), νn)
g∼ 〈(), δn〉

which completes this case.

(⇐) Let δn = δ. The derivation of ⇓ca for e shows that

〈b, γi〉⇓ca〈true, δi〉 〈e1, δi〉⇓ca〈ki, γi+1〉, 0 ≤ i < n

〈b, γn〉⇓ca〈false, δn〉 i = ()

for some n ≥ 0, γ1, . . . , γn, δ0, . . . , δn−1. Let us prove by recurrence on 0 ≤ i < n

that there exists hi, µi such that 〈a, σ, µi〉
hi∼ 〈b, γi〉 and 〈d1, σ〉µi

hi∼ 〈e1, γi〉. The

result is already true for i = 0, let us suppose it is true for 0 ≤ i < n. By induction

hypothesis on the derivation 〈b, γi〉⇓ca〈true, δi〉, there exist vi, νi and gi an extension

of hi such that

〈a, σ, µi〉⇓cl(vi, νi) (vi, νi)
h1∼ 〈true, δi〉

The second condition implies vi = true and νi
gi→ δi. Moreover d1

gi→ e1 since

d1
hi→ e1, therefore 〈d1, σ, νi〉

gi∼ 〈e1, δi〉. By induction hypothesis on the derivation

67

〈e1, δi〉⇓cl((), γi+1), there exist wi, µi+1 and hi+1 an extension of gi such that

〈d1, σ, νi〉⇓cl(wi, µi+1) (wi, µi+1)
hi+1∼ 〈(), γi+1〉

The second condition implies wi = () and µi+1
hi+1→ γi+1. Moreover a

hi+1→ b

since a
hi→ b and d1

hi+1→ e1 since d1
gi→ e1, therefore 〈a, σ, µi+1〉

hi+1∼ 〈b, γi+1〉

and 〈d1, σ, µi+1〉
hi+1∼ 〈e1, γi+1〉. This completes the recurrence. In particular,

for i = n − 1, 〈a, σ, µn〉
hn∼ 〈b, γn〉. By induction hypothesis on the derivation

〈b, γn〉⇓ca(false, νn), there exist vn, δn and g an extension of hn such that

〈a, σ, µn〉⇓cl(vn, νn) (vn, νn)
g∼ 〈false, δn〉

The second condition implies vn = false, therefore by definition of ⇓cl,

〈while a do d1, σ, µ0〉⇓ca((), νn) ((), νn)
g∼ 〈(), δn〉 = 〈i, δ〉

which completes this case and the proof. 2

3.3.3 Small-step

The proof using small-step semantics is a little bit more complicated. We now

give a precise account of the interpretation of variables in state environments, as

described in §3.2.3. Given a map h : Loc ⇀ Var and a stack of environments Σ, let

us inductively define the operator h ◦ Σ : StExp→ Exp as:

h ◦ (Σ :: σ)(e) = h ◦ σ(e)

h ◦ Σ({λx.a, σ}) = σ(λx.a)

h ◦ (Σ :: σ)(s �) = h ◦ Σ(s)

h ◦ Σ(s e) = (h ◦ Σ(s)) (h ◦ Σ(e))

h ◦ Σ(v s) = (h ◦ Σ(v)) (h ◦ Σ(s))

68

h ◦ (Σ :: σ)(x := s) = (h ◦ σ(x)) := h ◦ (Σ :: σ)(s)

h ◦ Σ(s; e) = h ◦ Σ(s);h ◦ Σ(e)

h ◦ Σ(if s then d else e) = if h ◦ Σ(s) then h ◦ Σ(d) else h ◦ Σ(e)

Definition 3.3.10 Given a state 〈s, Σ, µ〉 and a capsule 〈e, γ〉, both valid, we say

that they are bisimilar under h, where h is an injective map h : Loc⇀ Var, and we

write 〈s, Σ, µ〉 h∼ 〈e, γ〉, if and only if

h ◦ Σ(s) = e µ
h→ γ

2

Now that we know how to relate each element of both semantics, Theorem 3.3.11

shows that any derivation using closures mirrors zero or more derivation steps using

capsules, and Theorem 3.3.12 shows that any derivation step using capsules mirrors

zero or more derivation steps using closures. Combined, they give rise to Corollary

3.3.13, which shows that any derivation using capsules is mirrored by a derivation

using closures, and vice-versa.

Theorem 3.3.11 If 〈s, Σ, µ〉 h∼ 〈d, γ〉 and 〈s, Σ, µ〉 →cl 〈t, Π, ν〉, then there exists

e, δ such that

〈d, γ〉 ∗→ca 〈e, δ〉 〈t, Π, ν〉 g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Theorem 3.3.12 If 〈s, Σ, µ〉 h∼ 〈d, γ〉 and 〈d, γ〉 →ca 〈e, δ〉, then there exists

t,Π, ν such that

〈s, Σ, µ〉 ∗→cl 〈t, Π, ν〉 〈t, Π, ν〉 g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

69

Corollary 3.3.13 If 〈s, Σ, µ〉 h∼ 〈d, γ〉 then

• if 〈s, Σ, µ〉 ∗→cl 〈t, Π, ν〉 then there exists e, δ such that

〈d, γ〉 ∗→ca 〈e, δ〉 〈t, Π, ν〉 g∼ 〈e, δ〉

• if 〈d, γ〉 ∗→ca 〈e, δ〉 then there exists t,Π, ν such that

〈s, Σ, µ〉 ∗→cl 〈t, Π, ν〉 〈t, Π, ν〉 g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Proof of Corollary 3.3.13. We use standard arguments on weak bisimilarity.

The first part is proved by recurrence on the number of steps of the derivation of

〈s, Σ, µ〉 ∗→cl 〈t, Π, ν〉 and application of Theorem 3.3.11. Similarly, the second

part is by recurrence on the number of steps of 〈d, γ〉 ∗→ca 〈e, δ〉 and application of

Theorem 3.3.12. 2

Proof of Theorem 3.3.11. We proceed by induction on the derivation of 〈s, Σ, µ〉 →cl

〈t, Π, ν〉. In the interest of space, we only show the most interesting cases of the

induction in the main text: variable call x, λ-abstraction λx.e, function application

of a closure {λx.a, σ} v, popping from the environment stack v �, variable assign-

ment x := e, contexts C[s] and computing with the pop indicator s �. The other

cases, function application of a constant function f c, composition d; e, if condi-

tional if b then d else e and while loop while b do e, are straightforward inductive

arguments.

Variable If s = x for some variable x and Σ = [σ] then d = (h ◦ σ)(s) = y with y

the variable such that y = (h ◦ σ)(x).

70

By definition of →cl, 〈t, Π, ν〉 = 〈µ(σ(x)), [σ], µ〉, and by definition of →ca,

〈d, γ〉 = 〈y, γ〉 →ca 〈γ(y), γ〉. Moreover µ
h→ γ, therefore by definition of

h→,

µ(σ(x))
h→ γ(h(σ(x))) = γ(y). Therefore, with g = h, 〈t, Π, ν〉 = 〈µ(σ(x)), [σ], µ〉 g∼

〈γ(y), γ〉 which completes this case.

λ-Abstraction If s = λx.a and Σ = [σ], then d = (h ◦ σ)(λx.a) which is a term

α-equivalent to s, so d = λx.b for some b. Indeed, the variable x does not change

from s to d since only the free variables of s are affected by h ◦ σ.

By definition of →cl, 〈t, Π, ν〉 = 〈{λx.a, σ}, [σ], µ〉, and by reflexivity of ∗→ca,

〈d, γ〉 = 〈λx.b, γ〉 ∗→ca 〈λx.b, γ〉. But codomσ ⊆ domh and λx.b = (h ◦ σ)(λx.a),

therefore {λx.a, σ} h→ λx.b. Moreover we know µ
h→ γ and with g = h, we get

〈{λx.a, σ}, [σ], µ〉 g∼ 〈λx.b, γ〉 which completes this case.

Function application of a closure If s = {λx.a, σ} v and Σ = [τ], then (h ◦

Σ)({λx.a, σ}) = (h◦σ)(λx.a) is a λx.b for some expression b, and (h◦Σ)(v) is some

irreducible term i. Since d = (h ◦ Σ)(s), d = (λx.b) i.

By definition of →cl, 〈t, Π, ν〉 = 〈a �, σ[x/`] :: τ, µ[`/v]〉 with ` fresh, and by

definition of →ca, 〈d, γ〉 →ca 〈b[x/y], γ[y/i]〉, with y fresh. Let g : Loc ⇀ Var such

that:

g : domh ∪ {`} → codom g ∪ {y}

`h ∈ domh 7→ h(`h)

` 7→ y

Lemma 3.3.14 With the variables defined as above,

〈a, [σ[x/`]], µ[`/v]〉 g∼ 〈b[x/y], γ[y/i]〉

71

Proof. First of all, λx.b = (h ◦ σ)(λx.a), g is an extension of h and FV(λx.a) ⊆

domh, therefore λx.b = (g ◦ σ)(λx.a). Now b[x/y] = ((g ◦ σ)[x/y])(a) = (g ◦

σ[x/`])(λx.a) since g(`) = y.

We further need to argue that µ[`/v]
g→ γ[y/i]. We already know that dom g =

domh ∪ {`} = domµ ∪ {`} = domµ[`/v], and g(domµ[`/v]) = codomh ∪ {y} =

dom γ[y/i]. Let `′ ∈ domµ[`/v]. If `′ ∈ domµ, then µ[`/v](`′) = µ(`′)
h→ γ(g(`′)) =

γ[y/i](g(`′)) by injectivity of g, therefore µ[`/v](`′)
g→ γ[y/i](g(`′)). Otherwise,

`′ = ` and then µ[`/v](`) = v
h→ i = γ[y/i](y) = γ[y/i](g(`)), therefore since g is

an extension of h, µ[`/v](`)
g→ γ[y/i](g(`)). This completes the proof of the lemma.

2

Using lemma 3.3.14, we get that (g ◦ [σ[x/`]])(a) = b[x/y] and µ[`/v]
g→ γ[y/i].

But g ◦ (σ[x/`] :: τ)(a �) = (g ◦ [σ[x/`]])(a), therefore 〈a �, σ[x/`] :: τ, µ[`/v]〉 g→

γ[y/i], which completes this case.

Popping from the environment stack If s = v � for some value v and Σ =

σ :: τ , then d = (h ◦ Σ)(v �) = (h ◦ Σ)(v), which is an irreducible term i such that

v
h→ i, since:

• if v is a constant c, i = (h ◦ Σ)(c) = c;

• if v is a closure {λx.a, σ′}, i = (h ◦ Σ)({λx.a, σ′}) = (h ◦ σ′)(λx.a) and

codomσ′ ⊆ domh.

By definition of →cl, 〈t, Π, ν〉 = 〈v, [τ], µ〉, and by reflexivity of ∗→ca, 〈d, γ〉 =

〈i, γ〉 ∗→ca 〈i, γ〉. But i = (h◦Σ(v)) does not depend on Σ, therefore i = (h◦ [τ])(v).

Moreover we know µ
h→ γ and with g = h, we get 〈v, [τ], µ〉 g∼ 〈i, γ〉 which completes

this case.

72

Variable assignment If s = (x := v) for some variable x and value v and Σ = [σ],

then d = (h ◦ Σ)(x := v) = (y := i) with y a variable such that y = (h ◦ σ)(x) and

i = (h ◦ Σ)(v). Therefore 〈v, σ, µ〉 h∼ 〈i, γ〉.

By definition of →cl, 〈s, Π, ν〉 = 〈(), [σ], µ[σ(x)/v]〉, and by definition of →ca,

〈d, γ〉 = 〈y := i, γ〉 = 〈(), γ[y/i]〉. The following lemma completes this case.

Lemma 3.3.15 With the variables defined as above,

〈(), σ, µ[σ(x)/v]〉 h∼ 〈(), γ[y/i]〉

Proof. The domain conditions are fulfilled since 〈v, σ, µ〉 h∼ 〈i, γ〉, domµ =

domµ[σ(x)/v] and dom γ = dom γ[y/i]. Let ` ∈ domµ[σ(x)/v] = domµ. If ` = σ(x)

then µ[σ(x)/v](`) = v
h∼ i = γ[y/i](y) = γ[y/i](h(`)) since h(`) = (h ◦ σ)(x) =

(h ◦ σ)(x) = y. Otherwise µ[σ(x)/v](`) = µ(`)
h∼ γ(h(`)) = γ[y/i](h(`)) using that

h is injective and h is an extension of h. Finally ()
h→ (), which completes the proof

of the lemma. 2

Contexts If s = C[s1] for some context C such that 〈s1, Σ, µ〉 →cl 〈t1, Π, ν〉,

then by definition of→cl, t = C[t1]. By definition of
h∼ there exists d1 such that d =

C[d1]. By induction hypothesis there exists e1, δ such that 〈d1, γ〉 ∗→ca 〈e1, δ〉 and

〈t1, Π, ν〉 g∼ 〈e1, δ〉 for some g extension of h. By definition of →ca, 〈C[d1], γ〉 ∗→ca

〈C[e1], δ〉. By induction on the structure of C, and using the fact that the context

C cannot contain any �, we can then prove that 〈C[t1], Π, ν〉 g∼ 〈C[e1], δ〉, which

completes this case.

Computing under the pop indicator � If s = s1 � for s1 not a value, such that

〈s1, Σ, µ〉 →cl 〈t1, Π, ν〉, and Σ = Σ′ :: σ, then by definition of →cl, t = t1 � and

Π = Π′ :: σ for some Π′. 〈s1 �, Σ′ :: σ, µ〉 h∼ 〈d, γ〉, therefore 〈s1, Σ′, µ〉 h∼ 〈d, γ〉.

73

By induction hypothesis there exists e, δ such that 〈d, γ〉 ∗→ca 〈e, δ〉 and 〈t1, Π, ν〉 h∼

〈e, δ〉. Now this proves that 〈t1 �, Π′ :: σ, ν〉 h∼ 〈e, δ〉, which completes this case.

2

Proof of Theorem 3.3.12. We proceed similarly as for the proof of Theorem

3.3.11, by induction on the derivation of 〈d, γ〉 →ca 〈e, δ〉. We do not detail any

case here. The cases for variable call, function application of a λ-term, variable

assignment, and contexts are symmetric to the ones seen in the proof of Theorem

3.3.11. The case for function application of a constant function, composition, if

conditional and while loop are straightforward inductive arguments. Finally, this

Theorem does not need cases for λ-abstractions, popping from the environment

stack or computing with the pop indicator, as no rule in →ca applies to those. 2

3.4 Capsules encode less information

When evaluating an expression using capsules, less information is kept than when

evaluating the same expression using closures. Intuitively, when using closures, the

state of the computation keeps track of exactly what variables of a λ-abstraction

are in scope, even if those variables do not appear in the λ-abstraction itself and

will therefore never be used. When using capsules however, the capsule only keeps

track of the variables that are both in scope and appear in the λ-abstraction.

For example, let us evaluate the expressions d = (let x = 1 in let y = λy.0 in y)

and e = (let y = λy.0 in let x = 1 in y). Using the definitions of ⇓cl and ⇓ca, we can

prove that:

d⇓cl({λy.0, [x = `1]}, [`1 = 1, `2 = {λy.0, [x = 1]}])

e⇓cl({λy.0, []}, [`1 = 1, `2 = {λy.0, []}])

74

d⇓ca〈λy.0, [x′ = 1, y′ = λy.0]〉

e⇓ca〈λy.0, [x′ = 1, y′ = λy.0]〉

On this example, the result of evaluating d and e with ⇓cl keeps track of whether

x is in scope or not, but evaluating d and e with ⇓ca does not. This information

is completely superfluous for the rest of the computation and suppressing it with

capsules avoids some overhead. Propositions 3.4.1 to 3.4.4 give a more precise

account of what is happening.

Proposition 3.4.1 If v
h→ i then given h, i can be uniquely determined from v; the

converse is not true.

Proof. If v
h→ i1 and v

h→ i2 then either:

• v ∈ Const and then v = i1 and v = i2 thus i1 = i2;

• v = {λx.a, τ} ∈ Cl and then i1 = (h ◦ τ)(λx.a) and i2 = (h ◦ τ)(λx.a) thus

i1 = i2.

However, {λy.0, []} h→ (λy.0) and {λy.0, [x = `]} h→ (λy.0). 2

Proposition 3.4.2 If µ
h→ γ then given h, γ can be uniquely determined from µ;

the converse is not true.

Proof. If µ
h→ γ1 and µ

h→ γ2 then dom γ1 = h(domµ) = dom γ2. Moreover, for

all ` ∈ dommu, µ(`)
h→ γ1(h(`)) and µ(`)

h→ γ2(h(`)) therefore using proposition

3.4.1, γ1(h(`)) = γ2(h(`)). This covers all the domain of γ1 and γ2 since dom γ1 =

dom γ2 = h(domµ).

However, with h transforming ` in z, [` = {λy.0, []}] h→ [z = λy.0] and [` =

{λy.0, [x = `]}] h→ [z = λy.0] 2

75

Proposition 3.4.3 If 〈d, σ, µ〉 h∼ 〈e, γ〉 then given h, 〈e, γ〉 can be uniquely deter-

mined from 〈d, σ, µ〉; the converse is not true.

Proof. If 〈d, σ, µ〉 h∼ 〈e1, γ1〉 and 〈d, σ, µ〉 h∼ 〈e2, γ2〉, then (h ◦ σ(d)) = e1 and

(h ◦ σ(d)) = e2 therefore e1 = e2. Moreover µ
h→ γ1 and µ

h→ γ2 therefore using

proposition 3.4.2, γ1 = γ2.

However, with h transforming ` in z,

〈x, [x = `], [` = {λy.0, []}]〉 h∼ 〈z, [z = λy.0]〉

〈x, [x = `], [` = {λy.0, [x = `]}]〉 h∼ 〈z, [z = λy.0]〉

2

Proposition 3.4.4 If (v, µ)
h∼ 〈i, γ〉 then given h, 〈i, γ〉 can be uniquely deter-

mined from (v, µ); the converse is not true.

Proof. The unicity of 〈i, γ〉 is a direct consequence of propositions 3.4.1 and

3.4.2. However,

({λy.0, []}, [])
h∼ 〈λy.0, []〉

({λy.0, [x = `]}, [` = 1])
h∼ 〈λy.0, []〉

2

The idea behind those propositions is that for every capsule, there are several

bisimilar states corresponding to different computations, and each keeping track of

a different set of superfluous information. Similarly, for every irreducible capsules,

there are several bisimilar results keeping track of superfluous information. Capsules

thus offer a much cleaner representation of the state of computation.

76

3.5 Discussion

3.5.1 Capsules and Closures: a strong correspondence

Theorem 2.4.1 and corollary 3.3.13 show that capsules and closures are very strongly

related. Not only is there a derivation based on capsules for every derivation based

on closures, but these two derivations mirror each other. In big steps, this is because

each rule of the definition of ⇓ca mirrors a rule of the definition of ⇓cl, and because

the proof of the theorem is a direct structural induction on the definitions of ⇓cl

and ⇓ca. In small steps, rules for capsules and closures do not mirror each other as

perfectly, but the same idea holds. Thus the computations are completely bisimilar,

even though definining computations for capsules is simpler.

3.5.2 Suppression of the environment σ or the stack Σ

When using closures, a state is a triple 〈d, σ, µ〉 in big-step (resp. a triple 〈s, Σ, µ〉

in small-step), whereas when using capsules, it is just a capsule 〈e, γ〉 in both cases.

It they are bisimilar under h, it means that (h ◦ σ)(d) = e (resp. (h ◦ Σ)(d) = e)

and µ
h→ γ. Capsules eliminate the need for the environment σ (resp. the stack

of environments Σ) and thus suppress the indirection in closures that was needed

to handle imperative features. Their small-step semantics also does not need any

stack of environments of any sort, making the state of computation much simpler.

Finally, we originally created the capsule environment γ to replace the (closure)

environment σ (resp. the stack of environments Σ). However, it is remarkable that

γ is much closer to the store µ, while at the same time eliminating the need for σ

(resp. Σ).

Chapter 4

Capsules and Separation

In this chapter, we study a formulation of separation logic using capsules, a rep-

resentation of the state of a computation in higher-order programming languages

with mutable variables. We prove soundness of the frame rule in this context and

investigate alternative formulations with weaker side conditions.

4.1 Introduction

Separation logic is a logic for the study of locality and shared data. Introduced by

Reynolds in a series of lectures in the late 1990s, based on an earlier idea of Burstall,

separation logic has been widely studied in the last decade [Rey00, IO01, ORY01,

Rey02,BBTS07,PB08]. The difficulties of reasoning in the presence of heaps, stores,

stacks, and pointers are no more apparent than in this literature. Several papers

[YO02,BCY05,PBC06,COY07] cite notoriously thorny issues from dangling pointers

to arcane side conditions needed for soundness. Reynolds himself acknowledged that

his original formulation of separation logic was flawed [Rey02]. Chief among the

difficulties is the issue of catastrophic failure due to the dereferencing of unbound

77

78

variables or dangling pointers. There seems to be an unspoken belief that this is an

unavoidable aspect that must be confronted in any realistic model of computation.

On the contrary, we believe that the essential structure of separation is indepen-

dent of these encumbrances. It is our thesis that freedom from catastrophic failure

is the responsibility of the programming language, not the logic. Capsule semantics

provides this assurance, even in the presence of higher-order constructs and mutable

variables. This is because all free variables appearing in a capsule must be bound

in the environment of the capsule, by definition.

In this chapter, we propose a semantics for separation logic based on capsules.

The formulation works for higher-order programs with mutable variables. In §4.4

we give the semantics and prove the soundness of the frame rule in this context.

In §4.4.4, we study the motivation behind the nonstandard definition of partial

correctness preferred in much of the literature of separation logic [Rey02, COY07]

and investigate alternatives. It is here that the advantages of capsule semantics in

the study of separation can best be seen.

4.2 Assertions

Assertions P,Q, . . . are statements in some logical system, possibly with free vari-

ables in Var. We write FV(P) for the set of free variables of P . These variables are

subject to interpretation provided by a capsule environment σ.

The exact nature of the underlying logic is unimportant—it could be propo-

sitional, first order, second order or higher order—but we do require a few basic

properties common to standard logical systems. There must be a well-defined sat-

isfaction relation |= such that σ |= P has a truth value when the free variables of

P are interpreted by the capsule environment σ. Use of the metaexpression σ |= P

79

carries the tacit assumption that FV(P) ⊆ domσ. We will augment the logic with

the separation logic operators ∗ and −∗ (defined later in §4.4). Finally, we require

the following (natural) property to hold: if σ |= P , and z ∈ domσ − FV(P), then z

can be renamed via α-conversion of the second kind without affecting the truth of

P . In examples, we will use first order logic with ∗ and −∗, and equality on base

types.

4.3 Partial Correctness

The traditional definition of partial correctness and the definition used in the lit-

erature on separation logic diverge in a subtle and interesting way. The difference

hinges on whether the precondition is required to assert the absence of catastrophic

failure due to dangling pointers or lookup of unbound variables; this is the abort

condition of Reynolds [Rey02] or the fault condition of Calcagno, O’Hearn, and

Yang [COY07]. Our view, however, is that avoidance of catastrophic failure is the

responsibility of the programming language semantics, not the program logic, and

capsules do just that. Can this condition then be eliminated? In this section we

shed some light on this question.

Let P,Q be assertions and e a program. At issue is the meaning of the partial

correctness assertion {P} e {Q}. Consider the following three metastatements, each

parameterized by a closed environment σ:

(Aσ) σ |= P

(Bσ) FV(e) ⊆ domσ

(Cσ) if 〈e, σ〉 ∗→ 〈v, τ〉 and v is irreducible, then τ |= Q.

80

Statement (Aσ) entails FV(P) ⊆ domσ, because the definition of |= does not make

sense without it. More strongly, clσ(FV(P)) ⊆ domσ, since σ is closed. Statement

(Bσ) is equivalent to the assertion that 〈e, σ〉 is a valid capsule. Reynolds’s definition

[Rey02] uses a slightly different formulation

(B′σ) ¬(〈e, σ〉 ∗→ abort)

in place of (Bσ). Here 〈e, σ〉 need not be a valid capsule. The semantics of capsule

evaluation already precludes abort, thus (B′σ) is always true if 〈e, σ〉 is a capsule;

that is, (Bσ) implies (B′σ).

Now consider the following potential interpretations of {P} e {Q}.

{P} e {Q} ⇔ ∀σ (Aσ) ∧ (Bσ)⇒ (Cσ) (4.1)

{P} e {Q} ⇔ ∀σ (Aσ)⇒ (Bσ) ∧ (Cσ) (4.2)

Definition (4.1) says that if the precondition P holds of the input state σ and

the evaluation of 〈e, σ〉 terminates normally, then the output state τ satisfies the

postcondition Q. This is the naive interpretation used in traditional forms of Hoare

logic. Alternatively, the version preferred in the literature on separation logic would

be (4.2), the difference being that the precondition P must ensure that the evaluation

of 〈e, σ〉 cannot terminate abnormally.

Reynolds’s version [Rey02] is actually slightly weaker, using (B′σ) instead of (Bσ):

{P} e {Q} ⇔ ∀σ (Aσ)⇒ (B′σ) ∧ (Cσ) (4.3)

However, the difference is inconsequential: if {P} e {Q} holds in the sense of (4.3)

but not (4.2), then there exists a variable x ∈ FV(e)− domσ for some σ satisfying

P , and consequently x ∈ FV(e)−clσ(FV(P)); but by (B′σ), x can never be referenced

or assigned in the evaluation of 〈e, σ〉. Thus the presence or absence of x in the

domain of σ affects neither the truth of P nor the evaluation of 〈e, σ〉.

81

But there is a much more important benefit to (4.2) over (4.3). Consider the

metastatement

(B) FV(e) ⊆ FV(P).

A consequence of (4.2) is that (Aσ) implies (Bσ) for all σ. If P is satisfiable at

all, say by some σ, then (B) must hold, since variables in domσ not occurring free

in P can be renamed (by an α-conversion of the second kind—see §2.5.3) without

affecting the truth of P . Thus (4.2) holds with (B) in place of (Bσ). Moreover, since

(B) is independent of σ, assuming P is satisfiable at all, (4.2) is equivalent to the

definition

{P} e {Q} ⇔ (B) ∧ (∀σ (Aσ)⇒ (Cσ)) (4.4)

Note that, unlike (Bσ) and (B′σ), the condition (B) is syntactically checkable,

thus suitable as a side condition in a rule of inference. If we like, we may remove

the condition (B) in the definition of {P} e {Q} and instead introduce it as a side

condition in the frame rule. However, can it be eliminated entirely? That is, is the

formulation (4.1) sound? We show in §4.4.4 that it is not. In fact, even only slightly

weaker forms of the side condition (B) do not suffice for soundness.

4.4 Capsules and Separation Logic

4.4.1 Definitions

Here is our semantics for separation logic in terms of capsules. Call closed environ-

ments σ and τ independent and write σ ⊥ τ if their domains are disjoint. Define

82

σ + τ to be the join of σ and τ , provided they are independent. That is,

(σ + τ)(x) =



σ(x), if x ∈ domσ,

τ(x), if x ∈ dom τ,

undefined, otherwise.

Define separating conjunction by

σ |= P ∗Q

if there exist σ1 and σ2 such that σ = σ1 + σ2, σ1 |= P , and σ2 |= Q. Define

separating implication by

σ |= P −∗ Q

if σ + τ |= Q whenever τ |= P and σ + τ exists. It is easily seen that capsule envi-

ronments form a separation algebra in the sense of [COY07] under these definitions.

That is, the structure

({capsule environments}, +, ∅)

is a cancellative partial commutative monoid. This means that + is a commutative

and associative partial binary operation with identity ∅ satisfying the cancellative

property : the partial function + is injective in each variable. The relation σ ⊥ τ

holds if and only if σ + τ is defined.

It follows from results of [COY07] that separating conjunction ∗ and separating

implication −∗ satisfy the usual intuitionistic relationship: For all closed σ such that

FV(P) ∪ FV(Q) ∪ FV(R) ⊆ domσ,

σ |= (P ∗Q) −∗ R ⇔ σ |= P −∗ (Q −∗ R).

83

Other axioms of separation logic mentioned in [Rey02] are also easily checked:

(P ∨Q) ∗R⇔ (P ∗R) ∨ (Q ∗R)

(P ∧Q) ∗R⇒ (P ∗R) ∧ (Q ∗R)

(∃x P) ∗Q⇔ ∃x (P ∗Q) (x 6∈ FV(Q))

(∀x P) ∗Q⇒ ∀x (P ∗Q) (x 6∈ FV(Q)).

4.4.2 The Frame Rule

The soundness of the frame rule was first proved in [YO02] for the heap model of

computation. Our proof is essentially the same as the one given in [Rey02], but

somewhat shorter due to the simplifications afforded by capsule semantics.

Lemma 4.4.1 If

〈e, σ1 + σ2〉
∗→ 〈e, τ〉

and FV(e) ⊆ domσ1 (that is, 〈e, σ1〉 is a capsule), then for some τ1, 〈e, σ1〉
∗→

〈e, τ1〉 and τ = τ1 + σ2.

Proof. By induction on the derivation. None of the small-step evaluation rules

listed in §3.2 access any variable outside the domain of σ1 except for fresh variables

introduced in the application rule. In particular, the environment σ2 is not touched

during the evaluation. 2

Theorem 4.4.2 Under capsule semantics, the frame rule

{P} e {Q}
{P ∗R} e {Q ∗R}

is sound with respect to definition (4.2) or (4.4) of partial correctness assertions.

Equivalently, the frame rule is sound with respect to definition (4.1) of partial cor-

rectness assertions in the presence of the side condition FV(e) ⊆ FV(P).

84

Proof. As argued in §4.3, in all cases we can assume FV(e) ⊆ FV(P). Suppose

{P} e {Q}. Let σ |= P ∗ R. Then σ = σ1 + σ2 with σ1 |= P and σ2 |= R. Then

FV(R) ⊆ domσ2 and FV(e) ⊆ FV(P) ⊆ domσ1, therefore 〈e, σ1〉 is a valid capsule.

Since 〈e, σ〉 ∗→ 〈v, τ〉, by Lemma 4.4.1 there exists τ1 such that 〈e, σ1〉
∗→ 〈v, τ1〉

and τ = τ1 + σ2, and τ1 |= Q by the premise of the rule. Thus τ |= Q ∗R. 2

4.4.3 Discussion

Calcagno, O’Hearn, and Yang [COY07] argue that the soundness of the frame rule

for a given evaluation semantics is equivalent to the following two properties.

Safety Monotonicity If 〈e, σ0〉 is safe and σ = σ0 + σ1, then 〈e, σ〉 is safe.

Frame Property If 〈e, σ0〉 is safe, σ = σ0 + σ1, and 〈e, σ〉 ∗→ 〈e, σ′〉, then there

exists σ′0 such that σ′ = σ′0 + σ1 and 〈e, σ0〉
∗→ 〈e, σ′0〉.

(Here we are allowing 〈e, σ〉 to violate the closure conditions in the definition

of capsules, and safe means that (B′σ) holds.) In their words, “The first condition

says that if a state has enough resources for safe execution of a command, then so

do superstates. The second condition says that if a state has enough resources for

the command to execute safely, then execution on any bigger state can be tracked

back to the small state.”

With capsules, the safety monotonicity property is vacuously true, and the frame

property reduces to Lemma 4.4.1.

4.4.4 Alternative Conditions

Recall from §4.3 the side condition

85

(B) FV(e) ⊆ FV(P),

for which the frame rule with semantics (4.1) for partial correctness assertions is

sound. One might ask whether there is a weaker side condition that suffices for

soundness. In this section we show that there is not much hope.

The frame rule as stated by Reynolds has a side condition, which says that “no

variable occurring free in R is modified by e” [Rey02]. A literal formulation of the

side condition in terms of capsules is

(C) AV(e) ∩ FV(R) = ∅,

where AV(e), the assigned variables of e, is the set of x ∈ FV(e) having a free

occurrence on the left-hand side of an assignment :=. This is a bit confusing,

because (C) seems to serve no purpose:

Theorem 4.4.3

(a) Under semantics (4.2) of partial correctness assertions, the side condition (C)

in the frame rule is redundant.

(b) Under semantics (4.1) of partial correctness assertions, the frame rule with

side condition (C) is not sound.

Proof. First (a). As argued in §4.3, semantics (4.2) is equivalent to semantics

(4.1) with side condition (B), provided P is satisfiable at all. We show that in all

such nontrivial instances, (C) is subsumed by (B).

Suppose σ |= P ∗R. Then

σ = σ1 + σ2 σ1 |= P σ2 |= R.

86

By (B), we have

AV(e) ⊆ FV(e) ⊆ FV(P) ⊆ domσ1

and also

FV(R) ⊆ domσ2 domσ1 ∩ domσ2 = ∅,

therefore (C) holds.

For (b), we give a counterexample to soundness. Let σ consist of the bindings

σ(f) = λ().x σ(x) = 2.

Let R = R(f) be the assertion f() = 2. Let e be the program x := 3. Let

P = Q = true. The corresponding instance of the frame rule is

{true} x := 3 {true}
{true ∗ f() = 2} x := 3 {true ∗ f() = 2}

The premise {true} x := 3 {true} holds, but the conclusion does not. We have

σ |= true ∗ f() = 2,

where σ = ∅+σ, ∅ |= true, and σ |= f() = 2 and ∅ is the empty environment. The

program e does not assign to f , the only variable free in R, yet it indirectly alters

the value of f by assigning a new value to x, making R false. 2

We remark that Theorem 4.4.3(b) holds not just for capsules, but for any pro-

gramming language with records, arrays, objects, pointers, or any form of aliasing

whatsoever.

The problem at first seems to be that it is not enough to say that no variable

in FV(R) may be modified by e; we must ensure that no variable in the closure of

FV(R) may be modified by e, so that e cannot even indirectly alter R. This is the

condition

87

(B1) ∀σ σ |= P ∗R⇒ AV(e) ∩ clσ(FV(R)) = ∅

which is not expressible by any syntactic property of e, P , Q, and R.

But even this is not enough for soundness. Condition (B1) is implied by the very

strong syntactic property

(B2) AV(e) ⊆ FV(P)

which is only slightly weaker than (B). It asserts that all free variables assigned by

e are mentioned by P . Nevertheless, even (B2) is not enough for soundness. At first

this may seem quite counterintuitive, because (B2) implies that starting in any state

satisfying P ∗ R, e cannot change any variable in the closure of FV(R), therefore

cannot affect the truth of R. We state it as a theorem.

Theorem 4.4.4 The frame rule under semantics (4.1) for partial correctness as-

sertions with side condition (B2) is not sound.

Proof. Let σ consist of the bindings

σ(g) = λx.2 σ(f) = λ().3.

Let R = R(f) be the assertion f() = 3. Let e be the program

g := λx.if x = 1 then f() else 2.

Let P and Q both be the assertion g(0) = 2. The corresponding instance of the

frame rule is

{g(0) = 2} e {g(0) = 2}
{g(0) = 2 ∗ f() = 3} e {g(0) = 2 ∗ f() = 3}

The premise {g(0) = 2} e {g(0) = 2} holds, as does the side condition (B2), since

AV(e) = {g} = FV(P).

88

However, the conclusion does not. We have

σ |= g(0) = 2 ∗ f() = 3,

where σ = σ1 + σ2, domσ1 = {g}, domσ2 = {f}, σ1 |= g(0) = 2, and σ2 |= f() = 3.

However, after execution of the program e, the resulting environment binds g to a

term containing a free occurrence of f , so g and f cannot be separated. 2

4.5 Conclusion and Future Work

We were motivated to undertake this study in response to an anonymous review of

chapter 2 claiming that capsules “contradict the insights of separation logic which

has been extensively researched for the last decade.” We hope that we have con-

vinced the reader that there is no contradiction whatsoever—in fact quite the oppo-

site! Capsules provide a novel perspective on separation logic, because they capture

the same locality and persistence structure as traditional heap models, but in a

simpler, more mathematically tractable framework. We feel that this has great po-

tential for enhancing the understanding of separation by allowing research to focus

on the essentials.

We have only begun to scratch the surface in this work. We would like to

investigate other structures that have arisen in the study of separation logic to

see whether capsules can contribute there as well. The preliminary results of this

chapter leave us optimistic.

In particular, higher-order separation logic [BBTS07] proposes to use the much

more powerful higher-order logic in predicates. Nested Hoare triples [SBRY09] are

a neat idea to specify code stored in the heap. The anti-frame rule [Pot08,SYB+10]

presents a very interesting way of modeling hidden state. Finally, we would like to

89

study the concurrency rule [O’H07] in the context of capsules.

Part II

Non-Well-Founded Computation

90

Chapter 5

Well-Founded Coalgebras,

Revisited

Theoretical models of recursion schemes have been well studied under the names

well-founded coalgebras, recursive coalgebras, corecursive algebras, and Elgot alge-

bras. Much of this work focuses on conditions ensuring unique or canonical solutions,

e.g. when the coalgebra is well-founded.

If the coalgebra is not well-founded, then there can be multiple solutions. The

standard semantics of recursive programs gives a particular solution, namely the

least solution in a flat Scott domain, which may not be the desired one. In chapters 6

and 7, we propose programming language constructs to allow the specification of

alternative solutions and methods to compute them, and we implemente these new

constructs as an extension of OCaml.

In this chapter, we prove some theoretical results characterizing well-founded

coalgebras that slightly extend results of Adámek, Lücke, and Milius (2007), along

with several examples for which this extension is useful. We also give several exam-

ples that are not well-founded but still have a desired solution. In each case, the

91

92

function would diverge under the standard semantics of recursion, but can be spec-

ified and computed with the programming language constructs we have proposed.

5.1 Introduction

Infinite coinductive datatypes and functions on them offer interesting challenges in

the design of programming languages. While most programmers feel comfortable

with inductive datatypes, coinductive datatypes are often considered difficult to

handle. Many programming languages do not even provide constructs to define

them. OCaml offers the possibility of defining coinductive datatypes, but the means

to define recursive functions on them are limited. Often the obvious definitions do

not halt or provide the wrong solution.

Theoretical models of recursion schemes have been well studied under the names

well-founded coalgebras, recursive coalgebras [ALM07], corecursive algebras [CUV09],

and Elgot algebras [AMV06]. Much of this work focuses on conditions ensuring

unique or canonical solutions, e.g. when the coalgebra is well-founded.

A prototypical example of a function that fits the well-founded scheme is merge-

sort. Given a list, we can sort it by dividing it into identical pieces, sorting the

smaller lists, then merging the resulting sorted lists. The base case is the empty

list or the list containing a single element. As with most recursive functions, the

scheme of definition is: given an argument, check if it is the base case; if not, prepare

the arguments for the recursive calls, recursively apply the function, then combine

the results of the recursive calls into the final result. For mergesort, this scheme is

illustrated in the following diagram:

93

A∗ A∗

A∗ +A∗ ×A∗ A∗ +A∗ ×A∗

mergesort

γ

idA∗ + mergesort×mergesort

α

The function γ checks whether the list is empty or a singleton, otherwise divides it

in two lists of roughly equal size.

γ(`) = ι1(`), ` = [] or ` = [a]

γ([a1; . . . ; an]) = ι2([a1; . . . ; abn/2c], [abn/2c+1; . . . ; an]), n ≥ 2.

Here ι1 and ι2 are the injections into the coproduct. After the function is applied

recursively, the results of the recursive calls are combined by α, which merges the

two sorted lists.

α(ι1(`)) = ` α(ι2(`1, `2)) = merge(`1, `2)

The merge function obeys a similar scheme:

A∗ ×A∗ A∗

A∗ +A×A∗ ×A∗ A∗ +A×A∗

merge

γ

idA∗ + idA ×merge

α

where

γ([], `) = γ(`, []) = ι1(`) α(ι1(`)) = `

γ(a1 :: `1, a2 :: `2) =


ι2(a1, `1, a2 :: `2) if a1 ≤ a2

ι2(a2, a1 :: `1, `2) if a1 > a2

α(ι2(a, `)) = a :: `.

94

The fact that these functions are well-defined and unique follows from the theory of

recursive coalgebras [ALM07].

Abstractly, these definitional schemes are of the form

C A

FC FA

h

γ

Fh

α (5.1)

where F is usually a polynomial functor on Set and (C, γ) and (A,α) are a coalgebra

and an algebra, respectively, for the functor F . The function h being defined is called

an F -coalgebra-algebra morphism. Diagram (5.1) plays a key role in this chapter, as

well as in chapters 6 and 7.

The standard semantics of recursion, as provided by all modern programming

languages, provides a means of expressing and computing the unique solution of

(5.1), provided the coalgebra C is well-founded; that is, provided there is a basis

to the recursion. However, the diagram (5.1) can act as a valid definitional scheme

even when C is not well-founded. This observation was the starting point of our

work on new program constructs for functions defined by such definitional schemes

when C is not well-founded, described in chapter 6 and 7.

In the course of our study, we also proved some theoretical results that clarify

and slightly generalize some results of [ALM07]. In this chapter, we present those

results, and provide some examples where our extension is useful. Although the

results of [ALM07] apply to a large class of recursive function definitions, there

appear to be cases that are not covered, at least not in any straightforward way.

The simplest example is the case of mutually recursive definitions. For example,

consider the even and odd predicates on natural numbers. In an ML-style language,

we would write:

95

let rec even n = if n = 0 then true else odd (n-1)

and odd n = if n = 0 then false else even (n-1)

Our results extend the results of [ALM07] to several patterns of function definitions,

including this one. Mutually recursive functions are treated in [AMV06], but our

treatment is more symmetric.

The main result of this chapter is a theoretical result that clarifies and mildly

generalizes a result of [ALM07]. We show:

• Every F -coalgebra C contains a maximal well-founded subcoalgebra wf C.

• If R is a final F -coalgebra, then wf R is the initial F -algebra.

• Let C be an F -coalgebra. The following are equivalent:

– C is well-founded; that is, C = wf C.

– There is a valid induction principle for C (defined precisely in §5.3.2).

– There is a unique coalgebra morphism C → wf R.

– There is a unique coalgebra-algebra morphism from C to any F -algebra.

Our constructions are based on the concept of realizations, a concrete represen-

tation of final coalgebras for a wide class of multisorted type signatures [Koz11].

Realizations go beyond ordinary polynomial functors on Set in that they handle

infinite (countable or uncountable) product and sum as well as total and partial

functions. They also handle multi-sorted signatures in a more symmetric way, with-

out relying on any Cartesian structure or parameterization as in [AMV06].

Our second contribution is a variety of well-founded and non-well-founded ex-

amples that illustrate the power and limitations of the theory.

96

The chapter is organized as follows. In §5.2 we review the results of [Koz11] on re-

alizations of coinductive types, which are essential to the understanding of our main

theoretical results in §5.3. In §5.3 we give a new characterization of well-founded

coalgebras in terms of realizations. In §5.4 we present several examples of well-

founded applications. Some of these are already covered by the results of [ALM07],

but others, such as mutually recursive functions even/odd and the Ackermann func-

tion, are not. However, each of these exhibits some interesting or surprising char-

acteristic that attests to the wide applicability of the theory. In §5.5 we present

several non-well-founded examples, including an example of Capretta [Cap07] in-

volving descending sequences of natural numbers and the semantics of alternating

Turing machines and IND programs [HK84]. These examples illustrate the useful-

ness of (5.1) as a definitional scheme even in the non-well-founded case. We conclude

in §5.6 with a discussion of related theoretical and practical results.

5.2 Realization of Coinductive Types

In the proof of Theorem 5.3.3, we make use of an explicit construction of final

coalgebras from [Koz11]. To make this chapter self-contained, this section recalls

the main definitions and results.

5.2.1 Directed Multigraphs

A directed multigraph is a structure G = (V, E, src, tgt) with nodes V , edges E, and

two maps src, tgt : E → V giving the source and target of each edge, respectively.

We write e : s → t if s = src e and t = tgt e. When specifying multigraphs, we will

sometimes use the notation s
n−→ t for the metastatement, “There are exactly n

97

edges from s to t.”

A path is a finite alternating sequence of nodes and edges

s0 e0 s1 e1 s2 · · · sn−1 en−1 sn,

n ≥ 0, such that ei : si → si+1, 0 ≤ i ≤ n − 1. These are the arrows of the free

category generated by G. The length of a path is the number of edges. A path of

length 0 is just a single node. The first and last nodes of a path p are denoted src p

and tgt p, respectively. As with edges, we write p : s→ t if s = src p and t = tgt p.

A multigraph homomorphism ` : G1 → G2 is a map ` : V1 → V2, ` : E1 → E2

such that if e : s → t then `(e) : `(s) → `(t). This lifts to a functor on the free

categories generated by G1 and G2.

5.2.2 Type Signatures

A type signature is a directed multigraph F along with a designation of each node of

F as either existential or universal. The existential and universal nodes correspond

respectively to coproduct and product constructors. The directed edges of the graph

represent the corresponding destructors.

For example, consider an algebraic signature consisting of a binary function

symbol f , a unary function symbol g, and a constant c. This would ordinarily be

represented by the polynomial endofunctor FX = X2 +X + 1, or in OCaml by

type t = F of t * t | G of t | C

We would represent this signature by a directed multigraph consisting of four nodes

{t, f, g, c}, of which t is existential and f, g, c are universal, along with edges

t
1−→
f

t
1−→
g

t
1−→
c

f
2−→
t

g
1−→
t
.

The multigraph is illustrated in Fig. 5.1.

98

t

gf c

Figure 5.1: A multigraph representing a single-sorted algebraic signature. Blue

diamonds represent existential nodes and red squares universal nodes.

5.2.3 Coalgebras and Realizations

Let F be a type signature with nodes V . An F -coalgebra is a V -indexed collection

of pairs (Cs, γs), where the Cs are sets and the γs are set functions

γs : Cs →


∑

src e=sCtgt e, if s is existential,∏
src e=sCtgt e, if s is universal.

A morphism of F -coalgebras is a V -indexed collection of set maps hs that commute

with the γs in the usual way. Similarly, an F -algebra is a V -indexed collection of

pairs (As, αs), where the As are sets and the αs are set functions

αs :


∑

src e=sAtgt e, if s is existential,∏
src e=sAtgt e, if s is universal

→ As.

A morphism of F -algebras is a V -indexed collection of set maps hs that commute

with the αs in the usual way. These definitions correspond to the traditional defini-

tion of F -coalgebras and F -algebras for an endofunctor F on SetV .

Coalgebras are equivalent to realizations. An F -realization is a directed multi-

graph G along with a multigraph homomorphism ` : G → F , called a typing, with

the following properties.

• If `(u) is existential, then there is exactly one edge of G with source u.

99

• If `(u) is universal, then ` is a bijection between the edges of G with source u

and the edges of F with source `(u).

A homomorphism of F -realizations is a multigraph homomorphism that commutes

with the typings.

Theorem 5.2.1 ([Koz11]) The categories of F -coalgebras and F -realizations are

equivalent (in the sense of [ML71, §IV.4]).

5.2.4 Final Coalgebras

Realizations allow a concrete construction of final coalgebras that is reminiscent of

the Brzozowski derivative on sets of strings. Here, instead of strings, the derivative

acts on certain sets of paths of the type signature.

Let F be a type signature. Construct a realization R, ` as follows. A node of R

is a set A of finite paths in F such that

• A is nonempty and prefix-closed;

• all paths in A have the same first node, which we define to be `(A);

• if p is a path in A of length n and tgt p is existential, then there is exactly one

path of length n+ 1 in A extending p;

• if p is a path in A of length n and tgt p is universal, then all paths of length

n+ 1 extending p are in A.

The edges of R are defined as follows. Let A be a set of paths in F and e an edge

of F . Define the Brzozowski derivative of A with respect to e to be

De(A) = {p | (src e) e p ∈ A},

100

the set of paths obtained by removing the initial edge e from paths in A that start

with that edge. If A is a node of R and De(A) is nonempty, we include exactly one

edge

(A, e) : A→ De(A)

in R and take `((A, e)) = e. It is readily verified that tgt (A, e) = De(A) satisfies

properties (i)–(iv) and that `(De(A)) = tgt e, so ` is a typing.

Theorem 5.2.2 ([Koz11]) The realization R, ` is final in the category of F -realizations.

The corresponding F -coalgebra as constructed in Theorem 5.2.1 is final in the cate-

gory of F -coalgebras.

5.3 Characterization of Well-Founded Coalgebras

Well-foundedness of coalgebras has a precise characterization in terms of their cor-

responding realizations: a coalgebra is well-founded if and only if its corresponding

realization is well-founded as a graph; that is, if it has no infinite directed paths.

The main theorem of [ALM07] characterizes halting in terms of finiteness instead

of well-foundedness, which by König’s lemma is equivalent for the finitary functors

considered in [ALM07], but it is really well-foundedness and not finiteness that is

the essential property. In the following, we consider coalgebras for a wider class

of functors, namely multi-sorted polynomial functors on SetV , where V is a set of

sorts, with infinite (countable and uncountable) product and sum, as well as total

and partial functions. This is the same class of functors considered in [Koz11]. Let

F be such a functor.

When a recursive function is called on a well-founded argument, the solution is

unique and the standard semantics will terminate. Theorem 5.3.3, which generalizes

101

[ALM07] to the non-finitary case, characterizes the conditions under which this

occurs.

The proof of Theorem 5.3.3 relies on some extra interesting facts which we also

prove, namely that every F -coalgebra C contains a unique maximal well-founded

subcoalgebra wf C and that if R is the final F -coalgebra, then wf R is the initial

F -algebra.

5.3.1 Well-Founded Coalgebras

An F -coalgebra-algebra morphism is a set function h : C → A, where (C, γ) is an

F -coalgebra and (A,α) is an F -algebra, such that the diagram (5.1) commutes.

An F -realization G = (V, E, src, tgt, `) is well-founded if all directed E-paths

are finite. An F -coalgebra is well-founded if its corresponding F -realization is.

Lemma 5.3.1 Every F -coalgebra contains a unique maximal well-founded subcoal-

gebra.

Proof. Equivalently, every F -realization G = (V, E, src, tgt, `) contains a unique

maximal well-founded F -subrealization wf G. The nodes wf V are the nodes of G

from which there are no infinite directed E-paths. The graph wf G is the induced

subgraph on wf V . Equivalently, the set of nodes of wf G is the smallest set of nodes

A of G satisfying the closure condition: if all E-successors of s are in A, then s ∈ A.

2

Lemma 5.3.2 Let R = (V, E, src, tgt, `) be the final F -realization. Then wf R is

an F -algebra.

Proof. By Lambek’s lemma [Lam68], the structure map (γs | s ∈ V) of the final

F -coalgebra corresponding to R is invertible, thus forms an F -algebra. Translating

102

back to the realization R, this means that

• for every edge e ∈ E such that src e is existential and every node v of R with

`(v) = tgt e, there exists a unique node u and edge d of R such that src d = u,

tgt d = v, and `(d) = e; and

• for every universal node s ∈ V and tuple (ve | src e = s) of nodes of R such that

`(ve) = tgt e, there exist a unique node u and tuple of edges (de | src e = s) of

R such that src de = u, tgt de = ve, and `(de) = e.

The existence and uniqueness of u in the above two cases assert the closure of

R under the algebraic operations. The subrealization wf R is closed under these

operations, because any node all of whose immediate E-successors are in wf R is

also in wf R, therefore wf R is a subalgebra of R. 2

We will show in Corollary 5.3.4 that wf R is in fact the initial F -algebra (up to

isomorphism). To show initiality, we need to show that there is a unique F -algebra

morphism to any other F -algebra. This will follow as a special case of Theorem

5.3.3(iv) below.

5.3.2 Induction Principle

The well-founded part of a realization G can be expressed in the modal µ-calculus

as wf G = µX.2X, where the modality 2 is interpreted in G by the E-successor

relation E(x) = {tgt e | e ∈ E, src e = x}; that is, the modal formula 2P holds of x

if P holds of all E-successors of x. Thus G is well-founded if µX.2X is universally

valid in G.

The induction principle for a well-founded realization G = (V, E, src, tgt, `) is:

∀x (∀y ∈ E(x) P (y))→ P (x)

∀x P (x)
, (5.2)

103

or more concisely,

2P → P

P
.

As we argue in Theorem 5.3.3, this rule is sound if and only if G is well-founded.

5.3.3 Main Theorem

We are now ready to state and prove our main theorem. We include point (v) to

align with [ALM07, Theorem 3.8], although it is not really needed for our work.

Theorem 5.3.3 Let (C, γ) be an F -coalgebra and let R be the final F -coalgebra.

The following are equivalent:

(i) C is well-founded; that is, C = wf C.

(ii) The induction principle (5.2) is valid for C.

(iii) There is a unique coalgebra morphism C → wf R.

(iv) There is a unique coalgebra-algebra morphism from C to any F -algebra.

(v) There is a unique parameterized coalgebra-algebra morphism from C to any

F -algebra.

Proof. The equivalence of (i) and (ii) is a fundamental property of relational

algebra. The implication (i) ⇒ (ii) requires the axiom of dependent choice.

Assuming (i) and (ii), (iv) can be proved by defining a coalgebra-algebra mor-

phism by induction, using (5.2). Let (As, αs) be an arbitrary F -algebra. Assume

the coalgebra C is given in the form of an F -realization G = (V, E, src, tgt, `). We

must define maps hs : `−1(s) → As for s ∈ V satisfying condition (5.1). This is

equivalent to the following two conditions. Let s ∈ V and u ∈ V such that `(u) = s.

104

• If s is existential, let d be the unique edge with src d = u, let v = tgt d, and

let e = `(d). Then

hs(u) = αs(ine(htgt e(v))) ∈ As.

• If s is universal, for each e such that src e = s, let de be the unique edge with

u = src e and `(de) = e, and let ve = tgt de. Then

hs(u) = αs(htgt e(ve) | src e = s) ∈ As.

The maps hs are uniquely defined by these equations due to the well-foundedness

of the E-successor relation on G.

By Lemma 5.3.2, wf R is an F -algebra, thus (iii) follows as a special case of (iv).

To argue that (iii) implies (i), we observe that under any morphism of F -

realizations C → wf R, an infinite path in C would map to an infinite path in

wf R, which cannot exist by definition, since wf R is well-founded. Thus C must be

well-founded as well.

For (v) ⇒ (iv), suppose that there is a unique parameterized coalgebra-algebra

morphism from C to any F -algebra. That is, for any α′ : FA × C → A there is a

unique h which makes the following diagram commute:

C A

FC × C FA× C

h

(γ, id)

Fh× id

α′ (5.3)

We want to show that that there is a unique coalgebra-algebra morphism from C

to any F -algebra.

Take an arbitrary F -algebra α : A→ FA and consider α′ = α◦π1 : FA×C → A.

Using the diagram (5.3), we know that there exists a unique h : C → A such that

105

h = α ◦ π1 ◦ (Fh × id) ◦ (γ, id). We show that h is a coalgebra-algebra morphism

from C to A and that it is unique.

h = α ◦ π1 ◦ (Fh× id) ◦ (γ, id) diagram (5.3)

= α ◦ Fh ◦ π1 ◦ (γ, id) π1 is a natural transformation

= α ◦ Fh ◦ γ π1 ◦ (f, g) = f .

For uniqueness, note that any other coalgebra-algebra morphism g : C → A also

makes diagram (5.3) commute, for α′ = α ◦ π1:

g = α ◦ Fg ◦ γ definition of coalgebra-algebra morphism

= α ◦ Fg ◦ π1 ◦ (γ, id) π1 ◦ 〈f, g〉 = f

= α ◦ π1 ◦ (Fg × id) ◦ γ π1 is a natural transformation.

Hence g = h.

For (iv) ⇒ (v), we need the following fact. Let γ : C → FC be an F -coalgebra.

Define G(X) = C × FX. If (C, γ) is a well-founded F -coalgebra, then (C, (γ, id))

is a well-founded G-coalgebra. If (i) holds for F , then it also holds for G, therefore

(iv) holds for G, and (v) follows trivially for F since the diagram (5.3) for F is a

coalgebra-algebra morphism diagram for G. 2

Corollary 5.3.4 The F -coalgebra wf R is (up to isomorphism) the initial F -algebra.

Proof. The structure wf R is an F -algebra by Lemma 5.3.2. But it is also a

well-founded F -coalgebra by definition. By the equivalence of Theorem 5.3.3(i) and

(iv), there is a unique F -algebra morphism from wf R to any F -algebra, thus wf R

is initial. 2

106

5.3.4 Non-Well-Founded Coalgebras

In many interesting non-well-founded cases, h is not unique and depends on the

choice of solution method in the codomain A. However, for a large class of ordered

codomains, one is interested in a canonical solution, namely the least fixpoint of

a monotone map specified by the function definition. This situation was studied

in [AMV06], in which it was shown that under certain conditions on the codomain,

a function defined on a non-well-founded coalgebra can be considered a function on

the final coalgebra and is independent of the input representation. This covers many

examples in which the intended solution is a least fixpoint. The following result is

a minor adaptation of [AMV06, Proposition 3.5] to our framework and the proof is

similar.

Theorem 5.3.5 Let (A, α) be an ordered F -algebra such that A is a chain-complete

and α order-continuous. The construction of the least fixpoint of the map h 7→

α ◦ Fh ◦ γ is natural in S; that is, if f : S → S ′ is an F -coalgebra morphism, then

hS = hS′ ◦ f .

Although Theorem 5.3.5 covers many interesting non-well-founded situations,

there are some that it does not cover. For instance, to define substitution on infini-

tary λ-terms, the codomain is a coalgebra of infinitary terms, which is not ordered

in any natural way. In this case, the solution is unique for other reasons.

5.4 Well-Founded Examples

In this section, we present examples of recursive functions which are well-founded.

The first two, the greatest common divisor of two integers and the towers of Hanoi,

107

already fit the framework of [ALM07]. The other are guaranteed to have a unique

solution using the multi-sorted extension to their framework that we have proposed.

5.4.1 Integer GCD

For integers m,n ≥ 0 but not both 0, we would like to compute a triple (g, s, t)

such that g is the greatest common divisor (gcd) of m and n and sm + tn = g. A

recursive definition is

let rec gcd m n =

if n = 0 then (m,1,0) else

let (q,r) = (m/n, m mod n) in

let (g,s,t) = gcd n r in

(g,t,s-q)

This gives the following instantiation of (5.1):

N× N N× Z× Z

F (N× N) F (N× Z× Z)

h

γ

Fh

α

Here FX = N +X × N and

γ(m,n) =


ι0(m) if n = 0 α(ι0(g)) = (g, 1, 0)

ι1(n,m mod n,m/n) if n 6= 0 α(ι1(g, s, t, q)) = (g, t, s− q).

The theory of recursive coalgebras [ALM07] guarantees the existence of a unique

function satisfying the diagram.

108

5.4.2 Towers of Hanoi

Another classic example of a recursive function is the towers of Hanoi. This math-

ematical game consists of three rods A, B and C and a number of disks of different

sizes that can slide on any rod. At the beginning of the game, all disks are on rod

A in order of size, smallest on top. The goal of the game is to find a procedure to

move all disks to rod B while respecting the following rules:

• only one disk at a time can be moved

• a move consists of removing the upper disk from one of the rods and sliding

in onto another rod, on top of other disks that might already be on that rod;

• no disk may be placed on top of a smaller disk.

For n disks, a recursive solution consists in recursively moving n− 1 disks from

the origin rod A to the third rod C, then moving the biggest disk from the origin rod

A to the destination rod B, and finally recursively moving n−1 disks from the third

rod C to the destination rod B. It is given by the following OCaml implementation,

where o, d and t are the origin, destination and third rod, respectively:

let rec hanoi n o d t =

if n = 0 then [] else

(hanoi (n-1) o t d) @ [(o,d)] @ (hanoi (n-1) t d o)

Let R be the set of rods {A,B,C}. A move can be represented as an element of

R2 consisting of the origin and the destination of the move. This gives the following

instantiation of (5.1):

109

N×R3
(
R2
)∗

1+R2 × (N×R3)× (N×R3) 1+R2 ×
(
R2
)∗ × (R2

)∗

h

γ

Fh

α

Here FX = 1 +R2 ×X and

γ(n, o, d, t) =


ι0(), if n = 0,

ι1(o, d, (n− 1, o, t, d), (n− 1, t, d, o)), if n 6= 0

α(ι0()) = ε α(ι1(o, d, b, e)) = b · (o, d) · e.

The theory of recursive coalgebras [ALM07] guarantees the existence of a unique

function satisfying the diagram.

5.4.3 Mutually Recursive Functions: even-odd

This subsection illustrates how our generalization to multi-sorted signatures handles

mutually recursive functions in a symmetric way. A very simple example is the

definition of the even and odd predicates on natural numbers.

let rec even n = if n = 0 then true else odd (n-1)

and odd n = if n = 0 then false else even (n-1)

We can depict the recursion graphically with the following diagram:

N

1 N

1

2

1 2

1

heven

id

hodd

id

110

This can be viewed as an endofunctor F : SetV → SetV , where V = {even, odd}. The

functor is defined by: F (A,B) = (1+B, 1+A) and if g : A→ A′ and h : B → B′,

then F (g, h) = (id + h, id + g) : F (A,B)→ F (A′, B′).

An F -coalgebra is a pair ((C,D), γ), where γ : (C,D)→ F (C,D) is a morphism

in the underlying category SetV ; that is,

γ = (γeven, γodd) : (C,D)→ (1 +D, 1 + C),

where γeven : C → 1 + D and γodd : D → 1 + C. Similarly, an F -algebra is a pair

((A,B), α), where α : F (A,B)→ (A,B) is a morphism in SetV ; that is,

α = (αeven, αodd) : (1 +B, 1 + A)→ (A,B),

where αeven : 1 +B → A and αodd : 1 + A→ B.

An F -algebra-coalgebra morphism h : ((C,D), γ) → ((A,B), α) is a map h =

(heven, hodd) : (C,D)→ (A,B) such that the following diagram commutes:

(C,D) (A,B)

(1+D,1+ C) (1+B, 1+A)

(heven, hodd)

(γeven, γodd)

(id + hodd, id + heven)

(αeven, αodd)

In our application, we have A = B = 2 and C = D = N, with

γeven(n) = γodd(n) =


ι0() if n = 0

ι1(n− 1) if n > 0

αeven(ι0()) = true

αodd(ι0()) = false

αeven(ι1(b)) = αodd(ι1(b)) = b.

111

5.4.4 Ackermann Function

The Ackermann function

A(0, n) = n+ 1 (5.4)

A(m+ 1, 0) = A(m, 1) (5.5)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)) (5.6)

is a notoriously fast-growing function that also fits into our general scheme (although

one should not try to compute it!). This example is quite interesting, because at

first glance it seems not to fit into the general scheme (5.1) because of the nested

recursive call in the third clause. However, a key insight comes from the termination

proof, which is done by induction on the well-founded lexicographic order on N×N

with m as the more significant parameter. We see that we can break the definition

into two stages, both higher-order.

Rewriting A(m,n) as Am(n), we have that (5.4)–(5.6) is equivalent to

A0 = λn.n+ 1

Am+1 = λn.An+1
m (1),

where fn denotes the n-fold composition of f with itself:

f 0 = λn.n

fn+1 = f ◦ fn.

The outermost stage computes m 7→ Am. The diagram is

N N
N

1+ N 1+ N
N

A

γ

id1 +A

α

112

where

γ(0) = ι0()

γ(m+ 1) = ι1(m)

α(ι0()) = λn.n+ 1

α(ι1(f)) = λn.fn+1(1).

In turn, the function α is defined in terms the n-fold composition function (n, f) 7→

fn:

N×DD DD

F (N×DD) F (DD)

comp

γ

F (comp)

α

where FX = 1 +DD ×X and

γ(0, f) = ι0()

γ(n+ 1, f) = ι1(f, n, f)

α(ι0()) = idD

α(ι1(f, g)) = f ◦ g.

5.5 Non-Well-Founded Examples

Chapters 6 and 7 present many examples of non-well-founded functions, including

probabilistic protocols, p-adic numbers, and a fairly substantial example involving

abstract interpretation. To give a taste of those non-well-founded examples, we

present here a few others.

113

5.5.1 Descending Sequences

As the simplest nontrivial coinductive datatype, streams offer the ideal playground

to test new theories. We present an example on streams of natural numbers Nω.

The following example, taken from a talk by Capretta [Cap07], has a unique so-

lution, but does not fit the existing theory of well-founded coalgebras [ALM07] or

our generalization presented here, nor does it fit the theory of core corecursive al-

gebras [CUV09].

The goal is to produce from a given stream of natural numbers another stream

of natural numbers containing the lengths of the maximal strictly descending sub-

sequences of the input stream. An example is shown in the following figure, where

the input stream is depicted in a grid to easily picture the order of elements.

input: 4 3 1 1 3 2 3 5 3 2 0 3 1. . .

output: 3, 1, 2, 1, 4, 2, . . .

Here is a simple recursive definition of the function in CoCaml (see chapter 7), where

the constructor solver builds a new stream:

let descending arg =

let corec[constructor] descending_aux (n, i :: j :: t) =

if i > j then descending_aux (n+1, j :: t)

else n :: descending_aux (1, j :: t) in

descending_aux (1, arg)

This definition corresponds to the following instantiation of (5.1):

114

N× Nω N
ω

N× Nω + N× (N× Nω) N
ω + N× Nω

h

γ

h+ idN × h

α

where FX = X + N×X and

γ(n, i :: j :: t) =


ι0(n+ 1, j :: t) if i > j

ι1(n, (1, j :: t)) otherwise

α(ι0(s)) = s α(ι1(n, s)) = n :: s.

5.5.2 Alternating Turing Machines and IND Programs

The semantics of alternating Turing machines is described in terms of an inductive

labeling of machine configurations C with either false (rejecting), true (accepting),

or ⊥ (undetermined). In the present framework, the function γ would give the

set of successor configurations and the labeling of the state as either existential or

universal, and α would tell how to label configurations false, true, or⊥ inductively up

the computation tree. Formally, α gives the infimum for universal configurations and

supremum for existential configurations in 3-valued Kleene logic 3 = {false,⊥, true}

with ordering false ≤ ⊥ ≤ true.

C 3

2× Pfin(C) 2× Pfin(3)

h

γ

id2 + Pfin(h)

α

The canonical solution is defined to be the least fixpoint with respect to a different

order, namely the flat Scott order ⊥ v false, ⊥ v true. This example is interesting,

because it is a case in which α is not strict; for example, a universal configuration

115

can be labeled false as soon as one of its successors is known to be labeled false,

regardless of the labels of the other successors.

A similar model is the IND programming language for the inductive sets [HK84].

An IND program consists of a sequence of labeled statements of three kinds: universal

and existential assignment (x := ∀ and x := ∃, respectively), conditional test (if s =

t then `1 else `2), and halting (accept, reject). IND programs accept exactly the

inductively definable sets, which over N are exactly the Π1
1 sets. The semantics is

identical to alternating Turing machines, except that the branching degree is equal

to the cardinality of the domain of computation, thus the finite powerset functor

must be replaced by the unrestricted powerset functor.

5.6 Discussion

In this chapter, we have presented the origins of our work on bringing coinduction

to a functional language in the form of effective language constructs.

The work in the present chapter and chapters 6 and 7 was inspired by work on

recursive coalgebras [ALM07] and Elgot algebras [AMV06]. We have extended and

clarified the results in [ALM07] by providing a different proof that works on a larger

class of functors. Our generalization handles multi-sorted signatures and mutually

recursive functions in a symmetric way and is not restricted to finitary functors.

We have also provided several examples of functions defined using this scheme, as

well as non-well-founded examples that do not have a unique solution but still have

a canonical solution. Finally, we have briefly described our work on programming

language constructs to allow the programmer to choose alternative solution methods

when the standard semantics of recursion would not halt.

Chapter 6

Language Constructs for

Non-Well-Founded Computation

Recursive functions defined on a coalgebraic datatype C may not converge if there

are cycles in the input, that is, if the input object is not well-founded. Even so,

there is often a useful solution. Unfortunately, current functional programming

languages provide no support for specifying alternative solution methods. In this

chapter we give numerous examples in which it would be useful to do so: free

variables, α-conversion, and substitution in infinitary λ-terms; halting probabilities

and expected running times of probabilistic protocols; abstract interpretation; and

constructions involving finite automata. In each case the function would diverge

under the standard semantics of recursion. We propose programming language

constructs that would allow the specification of alternative solutions and methods

to compute them.

116

117

6.1 Introduction

Coalgebraic datatypes have become popular in recent years in the study of infinite

behaviors and non-terminating computation. One would like to define functions on

coinductive datatypes by structural recursion, but such functions may not converge

if there are cycles in the input; that is, if the input object is not well-founded. Even

so, there is often a useful solution that we would like to compute.

For example, consider the problem of computing the set of free variables of a

λ-term. In pseudo-ML, we might write

type term = let rec fv = function

| Var of string | Var v -> {v}

| App of term * term | App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam of string * term | Lam (x,t) -> (fv t) − {x}

and this works provided the argument is an ordinary (well-founded) λ-term. How-

ever, if we call the function on an infinitary term (λ-coterm), say

let rec t = App (Var "x", App (Var "y", t))

•

x •

y

(6.1)

then the function will diverge, even though it is clear the answer should be {x, y}.

Note that this is not a corecursive definition: we are not asking for a greatest

solution or a unique solution in a final coalgebra, but rather a least solution in

a different ordered domain from the one provided by the standard semantics of

recursive functions. The standard semantics gives us the least solution in the flat

Scott domain (P(string)⊥, v) with bottom element ⊥ representing nontermination,

118

whereas we would like the least solution in a different CPO, namely (P(string), ⊆)

with bottom element ∅.

The coinductive elements we consider are always regular, that is, they have a

finite but possibly cyclic representation. This is different from a setting in which

infinite elements are represented lazily. A few of our examples, like substitution,

could be computed by lazy evaluation, but most of them, for example free variables,

could not.

Theoretically, the situation is similar to the one is chapter 5, and is governed by

diagrams of the form (5.1):

C

FC

A

FA

h

γ

Fh

α

describing a recursive definition of a function h : C → A. Here F is a functor

describing the structure of the recursion. To apply h to an input x, the function γ :

C → FC identifies the base cases, and in the recursive case prepares the arguments

for the recursive calls; the function Fh : FC → FA performs the recursive calls;

and the function α : FA → A assembles the return values from the recursive calls

into final value h(x).

A canonical example is the usual factorial function

let rec factorial = function

| 0 -> 1

| n -> n * factorial (n-1)

119

Here the abstract diagram (5.1) becomes

N N

1+ N× N 1+ N× N

h

γ

id1 + idN × h

α (6.2)

where the functor is FX = 1 + N×X and γ and α are given by:

γ(0) = ι0() α(ι0()) = 1

γ(n+ 1) = ι1(n+ 1, n) α(ι1(c, d)) = cd

where ι0 and ι1 are injectors into the coproduct. The fact that there is one recursive

call is reflected in the functor by the single X occurring on the right-hand side. The

function γ determines whether the argument is the base case 0 or the inductive case

n + 1, and in the latter case prepares the recursive call. The function α combines

the result of the recursive call with the input value by multiplication. In this case

we have a unique solution, which is precisely the factorial function.

Ordinary recursion over inductive datatypes corresponds to the case in which

C is well-founded. In this case, the solution h exists and is unique: it is the least

solution in the standard flat Scott domain. For example, the factorial function is

uniquely defined by (6.2) in this sense. If C is not well-founded, there can be multiple

solutions, and the one provided by the standard semantics of recursion is typically

not be the one we want. Nevertheless, the diagram (5.1) can still serve as a valid

definitional scheme, provided we are allowed to specify a desired solution. In the free

variables example, the codomain of the function (sets of variables) is indeed a com-

plete CPO under the usual set inclusion order, and the constructor α is continuous,

thus the desired solution can be obtained by a least fixpoint computation.

120

The example (6.1) involving free variables of a λ-coterm fits this scheme with

the diagram

Term P(Var)

F (Term) F (P(Var))

fv

γ

idVar + fv2 + idVar × fv

α

where FX = Var +X2 + Var×X and

γ(Var x) = ι0(x) α(ι0(x)) = {x}

γ(App (t1, t2)) = ι1(t1, t2) α(ι1(u, v)) = u ∪ v

γ(Lam (x, t)) = ι2(x, t) α(ι2(x, v)) = v \ {x}.

Here the domain of fv (regular λ-coterms) is not well-founded and the codomain

(sets of variables) is not a final coalgebra, but the codomain is a complete CPO

under the usual set inclusion order with bottom element ∅, and the desired solution

is the least solution in this order; it is just not the one that would be computed by

the standard semantics of recursive functions.

Unfortunately, current programming languages provide little support for spec-

ifying alternative solutions. One must be able to specify a canonical method for

solving systems of equations over an F -algebra (the codomain) obtained from the

function definition and the input. We will demonstrate through several examples

that such a feature would be extremely useful in a programming language and would

bring coinduction and coinductive datatypes to a new level of usability in accordance

with the elegance already present for algebraic datatypes. Our examples include free

variables, α-conversion, and substitution in infinitary terms; halting probabilities,

expected running times, and outcome functions of probabilistic protocols; and ab-

121

stract interpretation. In each case, the function would diverge under the standard

semantics of recursion.

In this chapter we propose programming language constructs that would allow

the specification of alternative solutions and methods to compute them. These

examples require different solution methods: iterative least fixpoint computation,

Gaussian elimination, structural coinduction. We describe how this feature might

be implemented in a functional language and give mock-up implementations of all

our examples. In our implementation, we show how the function definition specifies

a system of equations and indicate how that system of equations might be extracted

automatically and then passed to an equation solver. In many cases, we suspect

that the process can be largely automated, requiring little extra work on the part

of the programmer.

Current functional languages are not particularly well suited to the manipulation

of coinductive datatypes. For example, in OCaml one can form coinductive objects

with let rec as in (6.1), but due to the absence of mutable variables, such objects

can only be created and not dynamically manipulated, which severely limits their

usefulness. One can simulate them with references, but this negates the elegance of

algebraic manipulation of inductively defined datatypes, for which the ML family

of languages is so well known. It would be of benefit to be able to treat coinductive

types the same way.

Our mock-up implementation with all examples and solvers is available from

[CoC12].

122

6.2 Motivating Examples

In this section we present a number of motivating examples that illustrate the use-

fulness of the problem. Several examples of well-founded definitions that fit the

scheme (5.1) can be found in the cited literature, including the Fibonacci function

and various divide-and-conquer algorithms such as quicksort and mergesort, so we

focus on non-well-founded examples: free variables and substitution in λ-coterms,

probabilistic protocols, and abstract interpretation.

6.2.1 Substitution

We now describe another function on infinitary λ-terms: substitution. A typical

implementation for well-founded terms would be

let rec subst t y = function

| Var x -> if x = y then t else Var x

| App (t1,t2) -> App (subst t y t1, subst t y t2)

| Lam (x,s) -> if x = y then Lam (x,s)

else if x ∈ fv t then

let w = fresh ()

in Lam (w, subst t y (rename w x s))

else Lam (x, subst t y s)

where fv is the free variable function defined above and rename w x s is a function

that substitutes a fresh variable w for x in a term s.

let rec rename w x = function

| Var z -> Var (if z = x then w else z)

| App (t1,t2) -> App (rename w x t1, rename w x t2)

| Lam (z,s) -> if z = x then Lam (z,s)

123

else Lam (z, rename w x s)

Applied to a λ-coterm with a cycle, for example attempting to substitute a term for

y in (6.1), the computation would never finish. Nevertheless, this computation fits

the scheme (5.1) with C = A = term (the set of λ-coterms), functor

FX = term +X2 + string×X Fh = idterm + h2 + idstring × h

and γ and α defined by

γ(Var x) =


ι0(t) if x = y

ι0(Var x) otherwise

γ(App (t1, t2)) = ι1(t1, t2)

γ(Lam (x, s)) =



ι0(Lam (x, s)) if x = y

ι2(w, rename w x s) if x 6= y and x ∈ fv t, where w is fresh

ι2(x, s) otherwise

α(ι0(s)) = s

α(ι1(s1, s2)) = App (s1, s2)

α(ι2(x, s)) = Lam (x, s)

In this case, even though the domain is not well-founded, the solution never-

theless exists and is unique up to observational equivalence. This is because the

definition of the function is corecursive and takes values in a final coalgebra.

6.2.2 Probabilistic Protocols

In this section, we present a few examples in the realm of probabilistic protocols.

Imagine one wants to simulate a biased coin, say a coin with probability 2/3 of

124

heads, with a fair coin. Here is a possible solution: flip the fair coin. If it comes

up heads, output heads, otherwise flip again. If the second flip is tails, output tails,

otherwise repeat from the start. This protocol can be represented succinctly by the

following probabilistic automaton:

s

H t

T

1
2

1
2

1
2

1
2

(6.3)

Operationally, starting from states s and t, the protocol generates series that con-

verge to 2/3 and 1/3, respectively.

PrH(s) = 1
2

+ 1
8

+ 1
32

+ 1
128

+ · · · = 2
3

PrH(t) = 1
4

+ 1
16

+ 1
64

+ 1
256

+ · · · = 1
3
.

However, these values can also be seen to satisfy a pair of mutually recursive equa-

tions:

PrH(s) = 1
2

+ 1
2
· PrH(t) PrH(t) = 1

2
· PrH(s).

This gives rise to a contractive map on the unit interval, which has a unique solution.

It is also monotone and continuous with respect to the natural order on the unit

interval, therefore has a unique least solution.

One would like to define the probabilistic automaton (6.3) by

type pa = H | T | Flip of float * pa * pa

let rec s = Flip (0.5,H,t) and t = Flip (0.5,T,s)

and write a recursive program, say something like

125

let rec pr_heads = function

| H -> 1.

| T -> 0.

| Flip (p,u,v) -> p *. (pr_heads u) +. (1 -. p) *. (pr_heads v)

and specify that the extracted equations should be solved exactly by Gaussian elim-

ination, or by iteration until achieving a fixpoint to within a sufficiently small error

tolerance ε. We give implementations using both methods.

The von Neumann trick for simulating a fair coin with a coin of arbitrary bias is

a similar example. In this protocol, we flip the coin twice. If the outcome is HT, we

output heads. If the outcome is TH, we output tails. These outcomes occur with

equal probability. If the outcome is HH or TT, we repeat.

s

t u

H T

p 1− p

1− p p

p 1− p

Here we would define

let rec s = Flip (p,t,u) and t = Flip (p,s,H) and u = Flip (p,T,s)

but the typing and recursive function pr_heads are the same. Markov chains and

Markov decision processes can be modeled the same way.

Other functions on probabilistic automata can be computed as well. The ex-

pected number of steps starting from state s is the least solution of the equation

E(s) =


0 if s ∈ {H, T}

1 + p · E(u) + (1− p) · E(v) if s = Flip(p, u, v).

126

We would like to write simply

let rec ex = function

| H -> 0.

| T -> 0.

| Flip (p,u,v) -> 1. +. p *. (ex u) +. (1 -. p) *. (ex v)

and specify that the extracted equations should be solved by Gaussian elimination

or least fixpoint iteration from 0.

The coinflip protocols we have discussed all fit the abstract definitional scheme

(5.1) in the form

S R

FS FR

h

γ

Fh

α

where S is the set of states (a state can be either H, T, or a triple (p, u, v), where

p ∈ R and u, v ∈ S, the last indicating that it flips a p-biased coin and moves to

state u with probability p and v with probability 1− p), F is the functor

FX = 1 + 1 + R×X2 Fh = id1 + id1 + idR × h2.

For both the probability of heads and expected running times examples, we can take

γ(s) =



ι0() if s = H

ι1() if s = T

ι2(p, u, v) if s = (p, u, v).

For the probability of heads, we can take

α(ι0()) = 1 α(ι1()) = 0 α(ι2(p, a, b)) = pa+ (1− p)b.

127

For the expected running time, we can take

α(ι0()) = α(ι1()) = 0 α(ι2(p, a, b)) = 1 + pa+ (1− p)b.

The desired solution in all cases is a least fixpoint in an appropriate ordered domain.

6.2.3 Abstract Interpretation

In this section we present our most involved example: abstract interpretation of

a simple imperative language. Our example follows Cousot and Cousot [CC77] as

inspired by lecture notes of Stephen Chong [Cho10].

Consider a simple imperative language of while programs with integer expressions

a and commands c. Let Var be a countable set of variables.

a ::= n ∈ Z | x ∈ Var | a1 + a2

c ::= skip | x := a | c1 ; c2 | if a then c1 else c2 | while a do c

For the purpose of tests in the conditional and while loop, an integer is considered

true if and only if it is nonzero. Otherwise, the operational semantics is standard,

in the style of [Win93]. A store is a partial function from variables to integers, an

arithmetic expression is interpreted relative to a store and returns an integer, and

a command is interpreted relative to a store and returns an updated store.

Abstract interpretation defines an abstract domain that approximates the values

manipulated by the program. We define an abstract domain for integers that ab-

stracts an integer by its sign. The set of abstract values is AbsInt = {neg, zero, pos,>},

where neg, zero, and pos represent negative, zero, and positive integers, repectively,

and > represents an integer of unknown sign. The abstract values form a join

128

semilattice with t defined by the following diagram:

>

zeroneg pos

(6.4)

The abstract interpretation of an arithmetic expression is defined relative to an

abstract store σ : Var ⇀ AbsInt, used to interpret the abstract values of variables. We

write AS = Var ⇀ AbsInt for the set of abstract stores. The abstract interpretation

of arithmetic expressions is given by:

AJnKσ =



pos if n > 0

zero if n = 0

neg if n < 0

AJxKσ = σ(x)

AJa1 + a2K =



AJa1Kσ if AJa2Kσ = zero

AJa2Kσ if AJa1Kσ = zero

AJa1Kσ t AJa2Kσ otherwise.

The abstract interpretation of commands returns an abstract store, which is an

abstraction of the concrete store returned by the commands. Abstract stores form

a join semilattice, where the join of two abstract stores just takes the join of each

variable: (σ1 t σ2)(x) = σ1(x) t σ2(x). Commands other than the while loop are

interpreted as follows:

CJskipKσ = σ CJx := aKσ = σ[x 7→ AJaKσ] CJc1 ; c2Kσ = CJc2K(CJc1Kσ)

129

CJif a then c1 else c2Kσ =



CJc1Kσ if AJaKσ ∈ {pos, neg}

CJc2Kσ if AJaKσ = zero

CJc1Kσ t CJc2Kσ otherwise.

We would ideally like to define

CJwhile a do cKσ =


σ if AJaKσ = zero

σ t CJwhile a do cK(CJcKσ) otherwise.

Unfortunately, when AJaKσ 6= zero, the definition is not well-founded, because it

is possible for σ and CJcKσ to be equal. However, it is a correct definition of

CJwhile a do cK as a least fixpoint in the join semilattice of abstract stores. The

existence of the least fixpoint can be obtained in a finite time by iteration because

the join semilattice of abstract stores satisfies the ascending chain condition (ACC),

that is, it does not contain any infinite ascending chains.

Given AJaK and CJcK previously defined, CJwhile a do cK satisfies the following

instantiation of (5.1):

AS AS

AS + AS× AS AS + AS× AS

CJwhile a do cK

γ

idAS + idAS × CJwhile a do cK

α

where the functor is FX = AS + AS×X and

γ(σ) =


ι1(σ) if AJaKσ = zero

ι2(σ, CJcKσ) otherwise

α(ι1(σ)) = σ

α(ι2(σ, τ)) = σ t τ

The function CJwhile a do cK is the least function in the pointwise order that makes

the above diagram commute.

130

This technique allows us to define CJcK inductively on the structure of c. An

inductive definition can be used here because the set of abstract syntax trees is

well-founded.

The literature on abstract interpretation explains how to compute the least fix-

point, and much research has been done on techniques for accelerating convergence

to the least fixpoint. This body of research can inform compiler optimization tech-

niques for computation with coalgebraic types.

6.2.4 Finite Automata

We conclude this section with a brief example involving finite automata. Suppose we

want to construct a deterministic finite automaton (DFA) over a two-letter alphabet

accepting the intersection of two regular sets given by two other DFAs over the same

alphabet. We might define states coalgebraically by

type state = State of bool * state * state

where the first component specifies whether the state is an accepting state and the

last two components give the states to move to under the two input symbols. The

standard product construction is defined coalgebraically simply by

let rec product (s : state) (t : state) : state =

match s, t with

| State (b1,s1,t1), State (b2,s2,t2) ->

State (b1 && b2, product s1 t1, product s2 t2)

and we can compute it, provided we can solve the generated equations.

131

6.3 A Framework for Non-Well-Founded Compu-

tation

In this section we discuss our proposed framework for incorporating language con-

structs to support non-well-founded computation. At a high level, we wish to spec-

ify a function h uniquely using a finite set E of structural recursive equations. The

function is defined in much the same way as an ordinary recursive function on an

inductive datatype. However, the value h(x) of the function on a particular input

x is computed not by calling the function in the usual sense, but by generating a

system of equations from the function definition and then passing the equations to a

specified equation solver to find a solution. The equation solver is either a standard

library function or programmed by the user according to an explicit interface.

The process is partitioned into several tasks as follows.

1. The left-hand sides of the clauses in the function definition determine syn-

tactic terms representing equation schemes. These schemes are extracted by

the compiler from the abstract syntax tree of the left-hand side expressions.

This determines (more or less, subject to optimizations) the function γ in the

diagram (5.1).

2. The right-hand sides of the clauses in the function definition determine the

function α in the diagram (5.1) (again, more or less, subject to optimizations).

These expressions essentially tell how to evaluate terms extracted in step 1 in

the codomain. As in 1, these are determined by the compiler from the abstract

syntax trees of the right-hand sides.

3. At runtime, when the function is called with a coalgebraic element c, a finite

132

system of equations is generated from the schemes extracted in steps 1 and

2, one equation for each element of the coalgebra reachable from c. In fact,

we can take the elements reachable from c as the variables in our equations.

Each such element matches exactly one clause of the function body, and this

determines the right-hand side of the equation that is generated.

4. The equations are passed to a solver that is specified by the user. This will

presumably be a module that is programmed separately according to a fixed

interface and available as a library function. There should be a simple syntactic

mechanism for specifying an alternative solution method (although we do not

specify here what that should look like).

Let us illustrate this using our initial example of the free variables. Recall the

infinitary λ-term below and the definition of the free variables function from the

introduction:

•

x •

y

let rec fv = function

| Var v -> {v}

| App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam (x,t) -> (fv t) − {x}

(6.5)

Steps 1 and 2 would analyze the left-and right-hand sides of the three clauses in the

body at compile time to determine the equation schemes. Then at runtime, if the

function were called on the coalgebraic element pictured, the runtime system would

generate four equations, one for each node reachable from the top node:

fv t = (fv x)∪ (fv u) fv u = (fv y)∪ (fv t) fv x = {x} fv y = {y}

where t and u are the unlabeled top and right nodes of the term above.

133

As noted, these equations have many solutions. In fact, any set containing the

variables x and y will be a solution. However, we are interested in the least solution

in the ordered domain (P(Var),⊆) with bottom element ∅. In this case, the least

solution would assign {x} to the leftmost node, {y} to the lowest node, and {x,y}

to the other two nodes.

With this in mind, we would pass the generated equations to an iterative equa-

tion solver, which would produce the desired solution. In many cases, such as this

example, the codomain is a complete partial order and we have default solvers to

compute least fixpoints, leaving to the programmer the simple task of indicating

that this is the desired solution method. That would be an ideal situation: the

defining equations of (6.5) plus a simple tag would be enough to obtain the desired

solution.

6.3.1 Generating Equations

The equations are generated from the recursive function definition and the input c, a

coalgebraic element, in accordance with the abstract definitional scheme (5.1). The

variables can be taken to be the elements of the coalgebraic object reachable from

c. There are finitely many of these, as no infinite object can ever exist in a running

program. More accurately stated, the objects of the final coalgebra represented by

coalgebraic elements during program execution are all regular in the sense that they

have a finite representation. These elements are first collected into a data structure

(in our implementation, simply a list) and the right-hand sides of the equations

are determined by the structure of the object using pattern matching. The object

matches exactly one of the terms extracted in step 1.

134

6.4 A First Implementation

The examples of §6.2 show the need for new program constructs that would allow

the user to manipulate corecursive types with the same ease and elegance as we are

used to for algebraic datatypes. It is the goal of this section to provide language

constructs that allow us to provide the intended semantics to the examples above

in a functional language like OCaml.

The general idea behind the implementation is as follows. We want to keep the

overhead for the programmer to a minimum. We want the programmer to specify

the function in the usual way, then at runtime, when the function is evaluated on a

given argument, a set of equations is generated and passed on to a solver, which will

find a solution according to the specification. In an ideal situation, the programmer

only has to specify the solver. For the examples where a CPO structure is present

in the codomain, such as the free variables example, or when we have a complete

metric space and a contractive map, we provide the typical solution methods (least

and unique fixpoint) and the programmer only needs to tag the codomain with the

intended solver. In other cases, the programmer needs to implement the solver.

6.4.1 Equations and Solvers

Our mock-up implementation aims to allow the programmer to encode a particular

instantiation of the general diagram (5.1) as an OCaml module. This module can

then be passed to an OCaml functor, Corecursive, that builds the desired function.

We discuss the structure of Corecursive later in this section.

The functor F is represented by a parameterized type ’b f. The structures

(C, γ) and (A,α), which form a coalgebra and an algebra, respectively, for the

functor F , are defined by types coalgebra and algebra, respectively. This allows

135

us to specify γ naturally as a function from coalgebra to coalgebra f and α as a

function from algebra f to algebra. In the free variables example, if VarSet is a

module implementing sets of strings, this is done as:

type ’b f = I1 of string | I2 of ’b * ’b | I3 of string * ’b

type coalgebra = Var of string

| App of coalgebra * coalgebra

| Lam of string * coalgebra

type algebra = VarSet.t

let gamma (c:coalgebra) : coalgebra f =

match c with

| Var v -> I1 v

| App(c1, c2) -> I2(c1, c2)

| Lam(x, c) -> I3(x, c)

let alpha (s:algebra f) : algebra =

match s with

| I1 v -> VarSet.singleton v

| I2(s1, s2) -> VarSet.union s1 s2

| I3(x, s) -> VarSet.remove x s

Variables are represented by strings and fresh variables are generated with a

counter. Equations are of the form variable = t, where the variables on the left-

hand side are elements of the domain and the terms on the right side are built up

from the constructors of the datatype, constants and variables.

In the fv example, the domain was specified by the following datatype:

type term =

| Var of string

136

| App of term * term

| Lam of string * term

Recall the four equations above defining the free variables of the λ-term (6.1) from

the introduction:

fv t = (fv x)∪ (fv u) fv u = (fv y)∪ (fv t) fv x = {x} fv y = {y}

A variable name is generated for each element of the coalgebra encountered. For

example, here we write v1 for the unknown corresponding to the value of fv t; v2

for x; v3 for u; and v4 for y. An equation is represented as a pair of a variable

and an element of type f variable. The intuitive meaning of a pair (v, w) is the

equation v = α(w). In the example above, we would have

("v1", I2("v2", "v3")) representing v1 = v2 ∪ v3

("v2", I1("x")) representing v2 = {x}

("v3", I2("v4", "v1")) representing v3 = v4 ∪ v1

("v4", I1("y")) representing v4 = {y}

The function solve can now be described. Its arguments are a variable v for which

we want a solution and a system of equations in which v appears. It returns a value

for v that satisfies the equations. In most cases the solution is not unique, and the

solve method determines which solution is returned.

For technical reasons, two more functions need to be provided. The function

equal provides an equality test on the coalgebra, which allows the equation gener-

ator to know when it has encountered a loop. In most cases, this equality is just

the OCaml physical equality ==; this is necessary because the OCaml equality = on

coinductive objects does not terminate. In some other cases the function equal is

an equality function built from both = and ==. This is necessary when the argument

is a pair that is destructed and rebuilt at each recursive call.

137

The function fh can be seen either as an iterator on the functor f in the style of

folding and mapping on lists or as a monadic operator on the functor f. It allows

the lifting of a function from ’c (typically coalgebra) to ’a (typically algebra) to

a function from ’c f to ’a f, while folding on an element of type ’e. It works by

destructing the element of type ’c f to get some number (perhaps zero) elements of

type ’c, successively applying the function on each of them while passing through

the element of type ’e, and reconstructing an element of type ’a f with the same

constructor used in ’c f, returned with the final value of the element of type ’e.

In the example on free variables, the function fh is defined as:

let fh (h: ’c * ’e -> ’a * ’e) : ’c f * ’e -> ’a f * ’e = function

| I1 v, e -> I1 v, e

| I2(c1, c2), e -> let a1, e1 = h (c1, e) in

let a2, e2 = h (c2, e1) in

I2(a1, a2), e2

| I3(x, c), e -> let a, e1 = h (c, e) in

I3(x, a), e1

If we had access to an abstract representation of the functor f, analyzing it allows

to automatically generate the function fh. This is what we do in §6.5.

All this is summarized in the signature of a type SOLVER, used to specify one of

those functions:

module type SOLVER = sig

type ’b f

type coalgebra

type algebra

val gamma : coalgebra -> coalgebra f

138

val alpha : algebra f -> algebra

type variable = string

type equation = variable * (variable f)

val solve : variable -> equation list -> algebra

val equal : coalgebra -> coalgebra -> bool

val fh : (’c * ’e -> ’a * ’e) -> ’c f * ’e -> ’a f * ’e

end

Let us now define the OCaml functor Corecursive. From a specification of a

function as a module S of type SOLVER, it generates the equations to be solved

and sends them to S.solve. Here is how it generates the equations: starting from

an element c of the coalgebra, it gathers all the elements of the coalgebra that

are reachable from c, recursively descending with gamma and fh, and stopping when

reaching an element that is equal—in the sense of the function equal—to an element

that has already been seen. For each of those elements, it generates an associated

fresh variable and an associated equation based on applying gamma to that element.

From an element c, generating the equations and solving them with solve re-

turns an element a in the coalgebra, the result of applying the function we defined

to c.

module Corecursive :

functor (S: SOLVER) -> sig

val main : S.coalgebra -> S.algebra

end

We will now explain the default solvers we have implemented and which are available

139

for the programmer to use. These solvers cover the examples we have shown before:

a least fixpoint solver, a solver that generates coinductive elements and is used for

substitution, and a Gaussian elimination solver.

6.4.2 Least Fixpoints

If the algebra A is a CPO, then every monotone function f on A has a least fixpoint,

by the Knaster–Tarski theorem. Moreover, if the CPO satisfies the ascending chain

condition (ACC), that is, if there does not exist an infinite ascending chain, then

this least fixpoint can be computed in finite time by iteration, starting from ⊥A.

Even if the ACC is not satisfied, an approximate least fixpoint may suffice.

In the free variables example, the codomain (P(Var),⊆) is a CPO, and its bottom

element is ⊥A = ∅. It satisfies the ACC as long as we restrict ourselves to the total

set of variables appearing in the term. This set is finite because the term is regular

and thus has a finite representation.

To implement this, first consider the set of equations: each variable is defined by

one equation relating it to the other variables. We keep a guess for each variable,

initially set at ⊥A, and compute a next guess based on the equation for each variable.

This eventually converges and we can return the value of the desired variable. Note

that to implement this, the programmer needs to know that A is a CPO satisfying

the ACC, and needs to provide two things: a bottom element ⊥A, and an equality

relation on A that determines when a fixpoint is achieved.

The same technique can be used to implement the solver for the abstract inter-

pretation example, as it is also a least fixpoint in a CPO. This CPO is the subset of

the join semilattice of abstract domains containing only the elements greater than

or equal to the initial abstract domain. The ACC is ensured by the fact that the

140

abstract domain is always of finite height. The bottom element is the initial abstract

domain. Much of the code is shared with the free variables example. As pointed

out before, only the bottom element of A and the equality on A change.

More suprisingly, this technique can also be used in the probability examples.

Here the system of equations looks more like a linear system of equation on R.

Except in trivial extreme cases, the equations are contracting, thus we can solve

them by iterative approximation until getting close enough to a fixpoint. The initial

element ⊥A is 0. The equality test on A is the interesting part: since it determines

when to stop iterating, two elements of A are considered equal if and only if they

differ by less than ε, the precision of the approximation. This is specified by the

programmer in the definition of equality on A. Of course, such a linear system could

also be solved with Gaussian elimination, as presented below in §6.4.4.

It can be seen from these examples that the least fixpoint solver is quite generic

and works for a large class of problems. We need only parameterize with a bottom

element to use as an initial guess and an equality test.

6.4.3 Generating Coinductive Elements and Substitution

Let us return to the substitution example. Suppose we wanted to replace y in

Fig. 6.1(b) by the term of Fig. 6.1(a) to obtain Fig. 6.1(c). The extracted equations

would be

v1 = App(v2, v3)

v2 = Var("x")

v3 = App(v4, v1)

v4 = App(Var "x", Var "x")

141

•

x x

(a)

•

x •

y

(b)

•

x •

•

x x

(c)

Figure 6.1: A substitution example.

and we are interested in the value of v1. Finding such a v1 is easily done by

executing the following code in OCaml:

let rec v1 = App(v2, v3)

and v2 = Var("x")

and v3 = App(v4, v1)

and v4 = App(Var "x", Var "x")

in v1

This code can be easily generated (as a string of text) from the equations. Un-

fortunately, there is no direct way of generating the element that this code would

produce. One workaround is to use the module Toploop of OCaml that provides

the ability to dynamically execute code from a string, like eval in Javascript. But

that is not a satisfying solution.

Another solution is to allow the program to manipulate terms by making all

subterms mutable using references:

type term =

142

| Var of string

| App of term ref * term ref

| Lam of string * term ref

This type allows the creation of the desired term by going down the equations and

building the terms progressively, back-patching if necessary when encountering a

loop. But this is also unsatisfactory, as we had to change the type of term to allow

references.

The missing piece is mutable variables, which are currently not supported in the

ML family of languages. A variable is mutable if it can be dynamically rebound, as

with the Scheme set! feature or ordinary assignment in imperative languages. In

ML, variables are only bound once when they are declared and cannot be rebound.

References can simulate mutable variables, but this corrupts the typing and

forces the programmer to work at a lower pointer-based level. Moreover, there are

subtle differences in the aliasing behavior of references and mutable variables. The

language constructs we propose should ideally be created in a programming language

with mutable variables.

6.4.4 Gaussian Elimination

In many of the examples on probabilities and streams, a set of linear equations is

generated. One of the examples on probabilistic protocols of §6.2.2 requires us to

find a float var1 such that

var1 = 0.5 + 0.5 * var2

var2 = 0.5 * var1

In the case where the equations are contractive, we have already seen that the

solution is unique and we can approximate it by iteration. We have also implemented

143

a Gaussian elimination solver that can be used to get a more precise answer or when

the map is not contractive but the solution is still unique.

But what happens when the linear system has no solution or an infinite number

of solutions? If the system does not have a solution, then there is no fixpoint for the

function, and the function is undefined on that input. If there are an infinite number

of solutions, it depends on the application. For example, in the case of computing

the probability of heads in a probabilistic protocol, we want the least such solution

such that all variables take values between 0 and 1.

For example, let us consider the following probabilistic protocol: Flip a fair coin.

If it comes up heads, output heads, otherwise flip again. Ignore the result and

come back to this last state, effectively flipping again forever. This protocol can be

represented by the following probabilistic automaton:

s

H t

1
2

1
2

1

The probability of heads starting from s and t, respectively, is given by:

PrH(s) = 1
2

+ 1
2
· PrH(t) PrH(t) = 1 · PrH(t).

The set of solutions for these equations for PrH(t) is the interval [0, 1], thus the

set of solutions for PrH(s) is the interval [1
2
, 1]. The desired result, however, is

the least of those solutions, namely 1/2 for PrH(s), because the protocol halts with

result heads only with probability 1/2.

Again, the Gaussian solver is quite generic and would be applicable to a large

class of problems involving linear equations.

144

6.5 Automatic Partitioning

In §6.4, we described a mock-up implementation that demonstrates the feasibility

of our approach. In this implementation, the programmer needs to provide the

elements of the SOLVER module. We now describe our ideas for future work, and

in particular, ideas to make the task of the programmer easier by automatically

generating some of those elements.

Providing all the elements to a SOLVER module requires from the programmer a

good understanding of the concepts explained in this chapter and a method to solve

equations. On the other hand, examples show that the same solving techniques arise

again and again. Ideally, we would like the programmer to have to write only:

type term = let rec[...] fv = function

| Var of string | Var v -> {v}

| App of term * term | App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam of string * term | Lam (x,t) -> (fv t) − {x}

where the keyword rec has been parameterized by the name of a module implement-

ing the SOLVER interface for a particular codomain, such as a generic iteration solver

for CPOs or contractive maps or a Gaussian elimination solver for linear equations.

This definition is almost enough to generate the SOLVER module. Only three

more things need to be specified by the programmer:

• the function equal on coalgebras, which is just == in most cases; and

• the two elements needed in the least fixpoint algorithm: a bottom element ⊥A

and an equality test =A on the algebra A, written algebra in the code.

The other elements can be directly computed from a careful analysis of the function

definition:

145

• The function can be typed with the usual typing rules for recursive functions.

Then algebra is defined as its input type and coalgebra as its output type.

• An analysis of the abstract syntax trees of the clauses of the function definition

can determine what is executed before the recursive calls, which comprises γ,

and what is executed after the recursive calls, which comprises α. An analysis

of the arguments that are passed to the recursive calls, as well as the variables

that are still alive across the boundary between gamma and alpha, determine

the functor f.

• The function fh can be defined by induction on the structure of the abstract

syntax tree defining ’a f. The only difficult case is the product, where we

apply h to every element of type ’a in the product, passing through the element

of type ’e, and returning a reconstructed product of the results.

• The type equation is always defined in the same way.

• Finally, the solve function is generic for all functions solved as a least fixpoint

by iteration, just depending on the bottom element and the equality on the

algebra.

6.6 Conclusion

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are simi-

lar in many ways. Nevertheless, there are some important distinctions. Algebraic

types have a long history, are very well known, and are heavily used in modern

applications, especially in the ML family of languages. Coalgebraic types, on the

other hand, are the subject of more recent research and are less well known. Not all

146

modern languages support coalgebraic types—for example, Standard ML and F#

do not—and even those that do may not do so adequately.

The most important distinction is that coalgebraic objects can be cyclic, whereas

algebraic objects are always well-founded. Functions defined by structural recursion

on well-founded data always terminate and yield a value under the standard seman-

tics of recursion, but not so on coalgebraic data. A more subtle distinction is that

constructors can be interpreted as functions under the algebraic interpretation, as

they are in Standard ML, but not under the coalgebraic interpretation as in OCaml.

Despite these differences, there are some strong similarities. They are defined

in the same way by recursive type equations, algebraic types as initial solutions

and coalgebraic types as final solutions. Because of this similarity, we would like to

program with them in the same way, using constructors and destructors and writing

recursive definitions using pattern matching.

In this chapter we have shown through several examples that this approach to

computing with coalgebraic types is not only useful but viable. For this to be pos-

sible, it is necessary to circumvent the standard semantics of recursion, and we

have demonstrated that this obstacle is not insurmountable. We have proposed new

programming language features that would allow the specification of alternative so-

lutions and methods to compute them, and we have given mock-up implementations

that demonstrate that this approach is feasible.

The chief features of our approach are the interpretation of a recursive function

definition as a scheme for the specification of equations, a means for extracting a

finite such system from the function definition and its (cyclic) argument, a means

for specifying an equation solver, and an interface between the two. In many cases,

such as an iterative fixpoint on a codomain satisfying the ascending chain condition,

147

the process can be largely automated, requiring little extra work on the part of the

programmer.

We have mentioned that mutable variables are essential for manipulating coalge-

braic data. Current functional languages in the ML family do not support mutable

variables; thus true coalgebraic data can only be constructed explicitly using let rec,

not programmatically. Moreover, once constructed, a coalgebraic object cannot be

changed dynamically. These restrictions currently constitute a severe restriction the

use of coalgebraic datatypes. One workaround is to simulate mutable variables with

references, but this is a grossly unsatisfactory alternative, because it confounds alge-

braic elegance and forces the programmer to work at a lower pointer-based level. In

the next chapter we present CoCaml, a smoother and more realistic implementation

of these ideas in an ML-like language with mutable variables.

Chapter 7

CoCaml: Functional Programming

with Regular Coinductive Types

We present CoCaml, a functional programming language extending OCaml, which

allows us to define functions on coinductive datatypes parameterized by an equation

solver. We provide numerous examples that attest to the usefulness of the new

programming constructs, including operations on infinite lists, infinitary λ-terms

and p-adic numbers.

In CoCaml, functions defined by equations, like the ones presented in chapter 6,

can be supplied with an extra parameter, namely a solver for the given equations.

For instance, the example fv of §6.1 would be almost the same in CoCaml:

let corec[iterator ∅] fv = function

| Var v -> {v}

| App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam (x,t) -> (fv t) − {x}

The construct corec with the parameter iterator ∅ specifies to the compiler that

the equations generated as in §6.3 should be solved using an iterator—in this case

148

149

a least fixpoint computation—starting with the initial element ∅.

7.1 Preliminaries

In this section, we present the basics of coinductive types and the theoretical foun-

dations on well-definedness of functions on coinductive types, which we will use to

define the new language constructs. We also describe capsule semantics, a heap-free

mathematical semantics for higher order functional and imperative programs, on

which our implementation is based.

7.1.1 ML with Coalgebraic Datatypes

Coalgebraic (coinductive) datatypes are very much like algebraic (inductive) datatypes

in that they are defined by recursive type equations. The set of algebraic objects

form the least (initial) solution of these equations and the set of coalgebraic objects

the greatest (final) solution.

Algebraic types have a long history going back to the initial algebra semantics

of Goguen and Thatcher [GT74]. They are very well known and are heavily used in

modern applications, especially in the ML family of languages. Coalgebraic types,

on the other hand, are the subject of more recent research and are less well known.

Not all modern functional languages support them—for example, Standard ML and

F# do not—and even those that do support them do not do so adequately.

The most important distinction is that coalgebraic objects can have infinite

paths, whereas algebraic objects are always well-founded. Regular coalgebraic ob-

jects are those with finite (but possibly cyclic) representations. We would like to

define recursive functions on coalgebraic objects in the same way that we define

150

recursive functions on algebraic data objects, by structural recursion. However,

whereas functions so defined on well-founded data always terminate and yield a

value under the standard semantics of recursion, this is not so with coalgebraic data

because of the circularities.

In Standard ML, constructors are interpreted as functions, and thus coinductive

objects cannot be formed. Whereas in OCaml, coinductive objects can be defined,

and constructors are not functions. Formally, in call-by-value languages, construc-

tors can be interpreted as functions under the algebraic interpretation, as they are

in Standard ML, but not under the coalgebraic interpretation as in OCaml. In

Standard ML, a constructor is a function:

- SOME;

val it = fn : ’a -> ’a option

Since it is call-by-value, its arguments are evaluated, which precludes the formation

of coinductive objects. In OCaml, a constructor is not a function. To use it as a

function, one must wrap it in a lambda:

> Some;;

Error: The constructor Some expects 1 argument(s),

but is applied here to 0 argument(s)

> fun x -> Some x;;

- : ’a -> ’a option = <fun >

This allows the formation of coinductive objects:

> type t = C of t;;

type t = C of t

> let rec x = C x;;

151

val x : t = C (C (C (C (C (C (C (C ...)))))))

Despite these differences, inductive and coinductive data share some strong sim-

ilarities. We have mentioned that they satisfy the same recursive type equations.

Because of this, we would like to define functions on them in the same way, using

constructors and destructors and writing recursive definitions using pattern match-

ing. However, to do this, it is necessary to circumvent the standard semantics of

recursion, which does not necessarily halt on cyclic objects.

For full functionality in working with coalgebraic data, mutable variables are es-

sential. Current functional languages in the ML family do not support mutable vari-

ables; thus true coalgebraic data can only be constructed explicitly using let rec,

provided we already know what they look like at compile time. Once constructed,

they cannot be changed, and they cannot be created programmatically. This con-

stitutes a severe restriction on the use of coalgebraic datatypes. One workaround

is to simulate mutable variables with references, but this is ugly; it corrupts the

algebraic typing and forces the programmer to work at a lower pointer-based level.

Capsules, which we describe next, offer the right abstraction to avoid the use of

reference, making construction and manipulation of coalgebraic data easy.

7.1.2 Capsule Semantics

Our implementation is based on capsule semantics, described in chapter 2. In capsule

semantics, regular coinductive types and recursive functions are defined in the same

way. There is a special uninitialized value <> for each type. The capsule evaluation

rules consider a variable to be irreducible if it is bound to this value. The variable can

be used in computations as long as there is no attempt to deconstruct it; any such

attempt results in a runtime error. “Deconstruction” here means different things

152

for different types. For a coinductive type, it means applying a destructor. For int,

it would mean attempting to perform arithmetic with it. But it can be used as

the argument of a constructor or can appear on the left-hand side of an assignment

without error, as these do not require deconstruction. This allows coalgebraic values

and recursive functions to be created in a uniform way via back-patching (a.k.a.

Landin’s knot). Thus, let rec x = d in e is syntactic sugar for

let x = <> in (x := d);e

which in turn is syntactic sugar for

(fun x -> (x := d);e) <>

For example, let rec x = (x,x) in snd (snd x) becomes

let x = <> in (x := (x,x)); snd (snd x)

During the evaluation of (x,x), the variable x is bound to <>, so x is not reduced.

1 The value of the expression is just (x,x). Now the assignment x := (x,x)

is performed, and x is rebound to the expression (x,x) in the environment. We

have created an infinite coinductive object, namely an infinite complete binary tree.

Evaluating snd (snd x) results in the value (x,x).

Note that we never need to use placeholders or substitution to create cycles,

as we are using the binding of x in the environment for this purpose. This is a

major advantage over previous approaches [HLW03, ST98, Sym06, yW11]. Once x

is rebound to a non-<> value, it can be deconstructed after looking it up in the

environment.

The variable x also gives a handle into the data structure that allows it to be

manipulated dynamically. For example, here is a program that creates a cyclic

1Actually, this is not quite true—a fresh variable is substituted for x by α-conversion first. But

we ignore this step to simplify the explanation.

153

object of length 3, then extends it to length 4:

> let rec x = 1 :: 2 :: 3 :: x;;

val x : int list = [1; 2; 3; 1; 2; 3; ...]

> let y = x in x := 0 :: y; x;;

- : int list = [0; 1; 2; 3; 0; 1; 2; 3; ...]

Any cycle must always contain at least one such variable. Note that these two cyclic

data objects actually represent the same infinite object, namely the infinite term

C(C(C(... . Two elements of a coalgebraic type are considered equal iff they are

bisimilar (see §7.4.3). For this reason, coalgebraic types are not really the same

as the circular data structures as studied in [ST98, BZ02, HLW03, Sym06]. The

example above shows that we now allow run time definition of regular coinductive

lists, whereas OCaml only allows infinite lists that are defined statically.

A downside to this approach is that the presence of the value <> requires a

runtime check on value lookup. This is a sacrifice we have made to accommodate

functional and imperative programming styles in a common framework, which is one

of the main motivating factors behind capsules. We introduced capsule semantics

in chapter 2; for a full account of capsule semantics in the presence of coalgebraic

types, see [Koz12].

7.2 Equations and Solvers

When the programmer makes a function call f(a0), where f was defined using the

corec keyword, execution happens in three distinct steps:

• a set of equations is generated;

• the equations are sent to a solver; the solver can be built-in or user-defined;

154

• the result of running the solver on the set of equations is returned as the result

of function call f(a).

In this section we describe in detail how equations are generated, and the different

possible choices for the solver.

7.2.1 Equation Generation

An equation denotes an equality between two terms. Its left-hand-side is a variable

xi that stands for the call of f on some input ai. Its right-hand-side is a partially

evaluated abstract syntax tree: it is an expression of the language which can contain

other variables xj.

When calling a recursive function f on an inductive (well-founded) term a0, this

function can make recursive calls, generating new calls to function f . The reason

this computation finishes is because the computation is well-founded: every path in

the call tree reaches a base case.

Similarly, if the function f was defined with the corec keyword, its call on a

coinductive term a0 might involve some recursive calls; those recursive calls might

themselves involve some recursive calls, and so on. This time the computation is

not well-founded, but because a0 has a finite representation, the set of possible such

calls is finite, for example recursive calls were made on a1, . . . , an.

While executing those recursive calls, an variable xi is generated for each ai, and

the call to f(ai) is partially evaluated to generate an equation, replacing the calls to

f(aj) by their corresponding xj. We thus generate a set of equations whose solution

is the value of f(a0). Of course, the arguments a0, . . . , an are not known in advance,

so the xi have to be generated while the program is exploring the recursive calls.

This is achieved by keeping track of all the ai that have been seen so far, along with

155

their associated unknowns xi.

A solver takes a set of equations and returns a solution, or fails. We currently

have four built-in solvers implemented, four of which are quite versatile and can be

used in many different applications. We also give to the programmer the ability to

define its own solvers.

7.2.2 The iterator Solver

In many cases the set of equations can be seen as defining a fixpoint of a monotone

function. For example, when the codomain is a CPO, and the operations on the

right-hand sides of the equations are monotone, then the Knaster–Tarski theorem

ensures that there is a least fixpoint. Moreoever, if the CPO is finite or other-

wise satisfies the ascending chain condition (ACC), then the least fixpoint can be

computed in finite time by iteration, starting from the bottom element of the CPO.

The iterator solver takes an argument b representing the initial guess for each

unknown. In the case of a CPO, this would typically be the bottom element.

Internally, a guess is made for each unknown, initially b. At each iteration, a

new guess is computed for each unknown by evaluating the corresponding right-

hand side, where the unknowns have been replaced by current guesses. When all

the new guesses equal the old guesses, we stop, as we have reached a fixpoint. The

right-hand sides are evaluated in postfix order, i.e., in the reverse order of seeing and

generating new equations, because it usually makes the iteration converge faster.

Note that this iterator solver is closely related to the least fixpoint solver

described in [Pot], but it can also be used in applications where the desired fixpoint

is not necessarily the least.

156

Example. We revisit the example from the introduction by applying this solver

to create a function set that computes the set of all elements appearing in a list.

A regular list, even if it is infinite, has only finitely many elements. If A is the type

of the elements, the codomain of set is the CPO (P(A),⊆) with bottom element

∅. Restricted to subsets of the set of variables appearing in the list, it satisfies the

ascending chain condition, which ensures that the least fixed point can be computed

in finite time by iteration.

For the implementation, we represent a set as an ordered list. The function

insert inserts an element into an ordered list without duplicating it if it is already

there. The function set can be defined as:

let corec[iterator []] set l = match l with

| [] -> []

| h :: t -> insert h (set t)

Internally, a guess is made for each unknown, initially []. At each iteration, a new

guess for each set is computed for each unknown by evaluating the corresponding

right-hand side. When all the new guesses equal the old guesses, we stop, as we

have reached a fixpoint, the intended result. The complexity of this solver depends

on the number of iterations; at each iteration every equation is evaluated, which

leads to a complexity on the order of the product of the number of iterations by the

number of equations.

7.2.3 The constructor Solver

The constructor solver can be used when a function tries to build a data struc-

ture that could be cyclic, representing a regular coinductive element. Internally,

constructor first checks that the right-hand side of every equation is a value (an

157

integer, float, string, Boolean, unit, tuple on values or unknowns, injection on a

value or unknown). Then it replaces the unknown variables on the right-hand sides

with normal variables and adds them to the environment, thus creating the capsule

representing the desired data structure. Its complexity is linear in the number of

equations.

Example. The map function on lists takes a function f and a list l, applies f on

every element h of l, and returns the list of the results f h. The constructor solver

can be used to create a map functions that works on all lists, finite or infinite.

let corec[constructor] map arg = match arg with

| f, [] -> []

| f, h :: t -> f(h) :: map (f,t)

7.2.4 The gaussian Solver

The gaussian solver is designed to be used when the function computes a linear

combination of recursive calls. The set of equations is then a Gaussian system that

can be solved by standard techniques.

Example. Imagine one wants to simulate a biased coin, say a coin with probability

2/3 of heads, with a fair coin. Here is a possible solution: flip the fair coin. If it

comes up heads, output heads, otherwise flip again. If the second flip is tails, output

tails, otherwise repeat from the start. This protocol can be represented succinctly

by the following probabilistic automaton:

158

s

H t

T

1
2

1
2

1
2

1
2

Operationally, starting from states s and t, the protocol generates series that con-

verge to 2/3 and 1/3, respectively.

PrH(s) = 1
2

+ 1
8

+ 1
32

+ 1
128

+ · · · = 2
3

PrH(t) = 1
4

+ 1
16

+ 1
64

+ 1
256

+ · · · = 1
3
.

However, these values can also be seen to satisfy a pair of mutually recursive equa-

tions:

PrH(s) = 1
2

+ 1
2
· PrH(t) PrH(t) = 1

2
· PrH(s).

In CoCaml, we can model the automaton by a coinductive type and define a

function computing the probability of Heads using the gaussian solver:

type tree = Heads | Tails

| Flip of float * tree * tree

let corec[gaussian] probability t = match t with

Heads -> 1.

| Tails -> 0.

| Flip(p, t1, t2) -> p *. probability t1 +.

(1. -. p) *. probability t2

159

7.2.5 The separate Solver

In both OCaml and CoCaml, the default printer for lists prints up to some preset

depth, printing “. . . ” when this depth is exceeded. This will always happen if the

list is circular.

let rec ones = 1 :: ones;;

val ones : int list = [1; 1; 1; 1; 1; 1; 1; ...]

This is not very satisfying. Often it may appear as if some pattern is repeating,

but what if for instance a 2 appears in 50th position and is not printed? A better

solution might be to print the non-repeating part normally, followed by the repeating

part in parenthesis. For example, the list [1; 2] might be printed 12 and the list

1 :: 2 :: ones be printed 12(1). This can be achieved by creating a special solver

separate, which from the equations defining the lists outputs two finite lists, the

non-repeating part and the repeating part. From there it is easy to finish.

Internally, the equations given to the solver are a graph representing the list.

A simple cycle-detection algorithm allows us to solve the equations as desired. Its

complexity is linear in the number of equations.

However, this example is not completely satisfying. In fact, the solver is quite ad

hoc, which contrasts greatly with the solvers we have seen so far. Moreover, the type

sep we have introduced exists merely to make the type checker happy. Conceptually,

the solver takes a list as an argument and returns a pair of lists. This example shows

the limits of the typing mechanism as applied to functions on coinductive data.

160

7.2.6 User-defined Solvers

The solvers we have presented so far are implemented directly in the interpreter.

However, as versatile as these solvers are, the programmer sometimes needs to define

his/her own solver. This can be done by defining a module of type Solver.

module type Solver = sig

type var

type expr

type t

val fresh : unit -> var

val unk : var -> expr

val solve : var -> (var * expr) list -> t

end

Type var is the type of the variables in the equations, and also the type of the

left-hand sides of the equations; type expr is the type of the right-hand sides of the

equations; and type t is the return type of the solver, and thus also of the function

that is being defined.

Function fresh generates fresh elements of type var, it is called on each element

of the coalgebra that is encountered; it is the responsibility of the user to provide

a function that generates elements of type var that are all different. In most cases

type var is simply string, and fresh strings can easily be generates, for example

with the function:

let fresh = let c = 0 in

(fun (x:unit) -> c := c+1;

"fresh" @ (string_of_int c))

161

But the programmer could choose a different type var, for instance to store more

information in it.

To represent variables on the right-hand sides of equations, we need to be able

to inject an element of type var into the type expr. Function unk provides this.

Typically expr is a sum type that contains a special case Unknown of var, and the

injection is just fun x -> Unknown x.

Finally, solve is the solver itself. By construction, an equation always has

a variable on its left-hand side, and an expr on its right-hand side, and is thus

represented as a pair of type var * expr. Given an element x of type var, and

a set (represented as a list) of equations, it returns an element of type t that is a

solution for the variable x satisfying those equations.

Example. We could define the gaussian solver, as a user-defined solver Gaussian

by taking var = string, t = float, and

type expr =

Val of float

| Plus of expr * expr

| Minus of expr * expr

| Mul of expr * expr

| Unknown of var

fresh and unk are the typical ones shown above, and solve implements a

gaussian-elimination algorithm in CoCaml. In the definition of the type expr, we

could have chosen to have Mul with arguments float*expr which would automati-

cally keep the equations linear. We write instead Mul of expr*expr which is more

general, and we check linearity dynamically. The declaration of function to_floati

162

on p-adic integers becomes

let corec[Gaussian] probability t = match t with

Heads -> Val 1.

| Tails -> Val 0.

| Flip(p, t1, t2) ->

Plus(Mul(Val p, probability t1),

Mul(Val (1.-. p), probability t2))

The right-hand side is slightly different and less clear than in the original defini-

tion. In some sense, instead of working with the abstract syntax tree of the whole

language, the programmer is able to define his/her own small abstract syntax tree

to work with, representing right-hand sides of functions. This is reminiscent of a

known technique to solve corecursive equations by defining a coalgebra whose car-

rier is a set of expressions comprising the intermediate steps of the unfolding of the

equations [SR07,SR10,Cap11].

7.3 Examples

In this section, we show several examples of functions on coinductive types, including

finite and infinite lists, a library for p-adic numbers, and infinitary λ-terms.

7.3.1 Finite and Infinite Lists

We present an application of our main solvers through examples on lists, one of the

simplest examples of coinductive types. Through these examples, we show how easy

it is to create recursive functions on regular coinductive datatypes, as the process is

very close to creating recursive functions on inductive datatypes.

163

Test of Finiteness

We would like to be able to test whether a list is finite or infinite. The most intuitive

way of doing this is to write a function like:

let rec is_finite l = match l with

| [] -> true

| h :: t -> is_finite t

Of course, this does not terminate on infinite lists under the standard semantics of

recursive functions. However, if we use the corec keyword, the equations generated

for [0] will look like

is_finite [0] = is_finite []

is_finite [] = true

and the result will be true. For the infinite list ones, the only equation will look

like

is_finite(ones) = is_finite(ones)

and we expect the result to be false. Intuitively, the result of solving the equations

should be true if and only if the expression true appears on the right-hand side of

one of the equations. This can be achieved with the iterator solver, using as first

guess the value we should observe if it is not finite, here false:

let corec[iterator false] is_finite = function

| [] -> true

| h :: t -> is_finite t

164

List exists

Given a Boolean-valued function f that tests a property of elements of a list l,

we would like to define a function that tests whether this property is satisfied by at

least one element of l. The function can simply be programmed using the iterator

solver, where the default value should be false:

let corec[iterator false] exists arg =

match arg with

| f, [] -> false

| f, h :: t -> f(h) || exists (f, t)

Note that for this function to work, it is critical that the “or” operator || be lazy,

so that the partial evaluation of the expression f(h) || exists (f, t) can return

true directly whenever f(h), even if the result of evaluating exists(f, t) is not

known.

The Curious Case of Filtering

Given a Boolean-valued function function f and a list l, we would like to define a

function that creates a new list l1 by keeping only the elements of l that satisfy

f. The first approach is to use the constructor solver and do it as if the list were

always finite:

let corec[constructor] filter_naive arg =

match arg with

| f, [] -> []

| f, h :: t ->

if f(h) then h :: filter_naive(f, t)

165

else filter_naive(f, t)

However, this does not quite work. For example, if called on the function fun x -> x <= 0

and the list ones, it generates only one equation

filter_naive(ones) = filter_naive(ones)

and it is not clear which solution is desired by the programmer. However, it is

clear that in this particular case, the set [] should be returned. The problem arises

whenever the function is called on an infinite list l such that no element of l satisfies

f. Rather than modify the solver, our solution is to be a little bit more careful and

return [] explicitly when needed:

let corec[constructor] filter arg = match arg with

| f, [] -> []

| f, h :: t: ->

if f(h) then h :: filter(f, t)

else if exists(f, t) then filter(f, t)

else []

The main problem with this solution is that it has a quadratic complexity. It is

possible to get to a linear complexity using an ad hoc solver, that we won’t developed

here.

Other Examples on Lists

We have presented a few examples of functions on infinite lists. Some of them are

inspired by classic functions on lists supported by the List module of OCaml. Some

functions of the List module, like sorting, do not make sense on infinite lists. But

most other functions of the List module can be implemented in similar ways. We

166

refer to the implementation provided as attachment for more details.

7.3.2 A Library for p-adic Numbers

In this section we present a library for p-adic numbers and operations on them.

The p-adic Numbers

The p-adic numbers [Bak11,Wik12] are a well-studied mathematical structure with

applications in several areas of mathematics. For a fixed prime p, the p-adic numbers

Qp form a field that is the completion of the rationals under the p-adic metric in

the same sense that the reals are the completion of the rationals under the usual

Euclidean metric. The p-adic metric is defined as follows. Define | · |p by

• |0|p = 0;

• if x ∈ Q, write x as x = apn/b, where n, a and b are integers and neither a nor

b is divisible by p. Then |x|p = p−n.

The distance between x and y in the p-adic metric is |x − y|p. Intuitively, x and y

are close if their difference is divisible by a high power of p.

Just as a real number has a decimal representation with a finite number of

nonzero digits to the left of the decimal point and a potentially infinite number of

nonzero digits to the right, a p-adic number has a representation in base p with a

finite number of p-ary digits to the right and a potentially infinite number of digits to

the left. Formally, every element of Qp can be written in the form
∑∞

i=k dip
i, where

the di are integers such that 0 ≤ di < p and k is an integer, possibly negative. An

important fact is that this representation is unique (up to leading zeros), in contrast

to the decimal representation, in which 1 = 0.999 If dk = 0 for k < 0, then the

167

number is said to be a p-adic integer. If b is not divisible by p, then the rational

number a/b is a p-adic integer. Finally, p-adic numbers for which the sequence (dk)k

is regular (ultimately periodic) are exactly the rational numbers. This is similar to

the decimal representations of real numbers. Since our lists must be regular so that

they can be represented in finite memory, these are the numbers we are interested

in. We fix the prime p (written p in programs) once and for all, for instance as a

global variable.

Equality and Normalization

We represent a p-adic number x =
∑∞

i=k dip
i as a pair of lists:

• the list d0, d1, d2, . . . in that order, which we call the integer part of x and

which can be finite or infinite; and

• if k < 0 and dk 6= 0, the list containing d−1, d−2, . . . , dk, which we call the

fractional part of x and which is always finite.

Since the representation x =
∑∞

i=k dip
i is unique up to leading zeros, the only

thing we have to worry about when comparing two p-adic integers is that an empty

list is the same as a list of zeros, finite or infinite. The following function equali uses

the iterator solver and compares two integer parts of p-adic numbers for equality:

let corec[iterator true] equali x =

match x with

| [], [] -> true

| h1 :: t1, h2 :: t2 ->

h1 = h2 && equali_aux (t1, t2)

| 0 :: t1, [] -> equali_aux (t1, [])

168

| [], 0 :: t2 -> equali_aux (t2, [])

| _ -> false

Interestingly, comparing the fractional parts is almost the same code, with the

rec keyword instead of the corec keyword, and no auxiliary function.

let rec equalf x = match x with

| [], [] -> true

| h1 :: t1, h2 :: t2 ->

h1 = h2 && equalf (t1, t2)

| 0 :: t1, [] -> equalf (t1 , [])

| [], 0 :: t2 -> equalf (t2 , [])

| _ -> false

let equal x1 x2 = match x1, x2 with

(i1 , j1), (i2, j2) ->

equali (i1, i2) && equalf (j1, j2)

This happens quite often: if one knows how to do something with inductive types,

the solution for coinductive types often involves only changing the rec keyword to

corec and some other minor adjustments. However, one must take care, as there are

exceptions to this rule. In this example, since here equali also works on inductive

types, we could have used equali instead of equalf in equal.

Now that we have equality, normalization of a p-adic integer becomes easy using

the constructor solver:

let corec[constructor] normalizei i =

if equali(i, []) then []

169

else match i with i :: t -> i :: normalizei t

The function normalizei only requires equality with zero (represented as []), which

is much easier than general equality. We can now write a normalization on the

fractional parts as a simple recursive function (once again, with the same code), or

just use normalizei, which also works on the fractional parts.

Conversion from a Rational

We wish to convert a given rational a/b with a, b ∈ Z to its p-adic representation.

Let us first try to convert x = a/b into a p-adic integer if b is not divisible by p. Since

x is a p-adic integer, we know that x can be written x =
∑∞

i=0 dip
i, thus multiplying

both sides by b gives

a = b
∞∑
i=0

dip
i.

Taking both sides modulo p, we get a = bd0 mod p. Since b and p are relatively

prime, this uniquely determines d0 such that 0 ≤ d0 < p, which can be found by the

Euclidean algorithm. We can now substract bd0 to get

a− bd0 = b
∞∑
i=1

dip
i.

This can be divided by p by definition of d0, which leads to the same kind of problem

recursively.

This procedure defines an algorithm to find the digits of a p-adic integer. Since

we know it will be cyclic, we can use the constructor solver:

let corec[constructor] from_rationali (a,b) =

if a = 0 then []

else let d = euclid p a b in

d :: from_rationali ((a - b*d)/p, b)

170

where the call euclid p a b is a recursive implentation of a (slightly modified)

Euclidean algorithm for finding d0 as above.

If b is divisible by p, it can be written pnb0 where b0 is not divisible by p, and

we can first find the representation of a/b0 as an integer, then shift by n digits to

simulate division by pn.

Conversion to a Float

Given a p-adic integer x =
∑∞

i=0 dip
i, define xk =

∑∞
i=0 dk+ip

i. Then for all k ≥ 0,

xk = dk+pxk+1. If the sequence (dk)k is regular, so is the sequence (xk)k, thus there

exist n,m > 0 such that xk+m = xk for all k ≥ n. It follows that

x = x0 =
n−1∑
i=0

dip
i + pnxn xn =

m−1∑
i=0

dn+ip
i + pmxn,

and further calculation reveals that x = a/b, where

a =
n+m−1∑
i=0

dip
i −

n−1∑
i=0

dip
m+i b = 1− pm.

But even without knowing m and n, the programmer can write a function that

will automatically construct a system of m+ n linear equations xk = dk + pxk+1 in

the unknowns x0, . . . , xm+n−1 and solve them by Gaussian elimination to obtain the

desired rational representation. To accomplish this, we can just use our gaussian

solver:

let corec[gaussian] to_floati i = match i with

| [] -> 0.

| d :: t -> (float_of_int d) +.

(float_of_int p) *. (to_floati t)

This function returns the floating point representation of a given p-adic integer.

It is interesting to note that, apart from the mention of corec[gaussian], this is

171

exactly the function we would have written to calculate the floating-point value of

an integer written in p-ary notation using Horner’s rule.

A similar program can be used to convert the floating part of a p-adic number

to a float. Adding the two parts gives the desired result.

Addition

Adding two p-adic integers is suprisingly easy. We can use (a slight adaptation

of) the primary school algorithm of adding digit by digit and using carries. A

carry might come from adding the floating parts, so the algorithm really takes three

arguments, the two p-adic integers to add and a carry. Using the constructor

solver, this gives:

let corec[constructor] addi arg = match arg with

| [], [], c ->

if c = 0 then []

else (c mod p) :: addi ([], [], c/p)

| h :: t, [], c ->

addi (h :: t, [0], c)

| [], h :: t, c ->

addi ([0], h :: t, c)

| hi :: ti , hj :: tj , c ->

let res = hi + hj + c in

(res mod p) :: addi (ti , tj, res / p)

Once again, once we have addition on p-adic integers, it is easy to program addition

on general p-adic numbers.

172

Multiplication and Division

The primary school algorithm and the constructor solver can also be used for

multiplication. However, we need to proceed in two steps. We first create a function

mult1 that takes a p-adic integer i, a digit j, and a carry c, and calculates i*j+c.

We then create a function multi that takes two p-adic integers i and j and a carry

c and calculates i*j+c.

let corec[constructor] mult1 arg = match arg with

| [], d, c -> if c = 0 then []

else (c mod p) :: mult1 ([], d, c/p)

| hi :: ti , d, c ->

let res = hi * d + c in

(res mod p) :: mult1 (ti , d, res / p)

let corec[constructor] multi arg = match arg with

| n1, [], c -> c

| n1, h2 :: t2, c ->

(match (addi (mult1 (n1 , h2 , 0), c, 0)) with

| [] -> 0 :: multi (n1 , t2 , 0)

| hr :: tr -> hr :: multi (n1, t2, tr))

To extend this to general p-adic numbers, we can multiply both i and j by suitable

powers of p before applying multi, then divide the result back as necessary.

Division of p-adic integers can be done with only one function using a constructor

solver in much the same way as addition or multiplication. The algorithm also uses

the euclid function and is closely related to from_rational.

173

Some of the examples above on p-adic numbers could be done with lazy eval-

uation, namely the arithmetic operations and conversion to a rational. However

equality, normalization, conversion to a float and printing (showing the cycle) could

not.

7.3.3 Equality

Now that we have recursive functions on coinductive types, we might ask whether

it would be possible to program equality on a coinductive type. The answer is

yes. The function is built in much the same way as the equali function, with

the iterator true solver and an auxiliary function. This is a general trend for

coinductive equality: two elements are equal unless there is evidence that they are

unequal.

The code can be found below, with the small simplification of having expressions

on pairs instead of general tuples.

type expr =

| Var of string

| Int of i

| Inj of string * expr

| Pair of expr * expr

let corec[iterator true] equal arg =

match arg with

| (Var x1, env1), (Var x2 , env2) ->

equal_aux ((assoc x1 env1 , env1),

(assoc x2 env2 , env2))

174

| (Var x1, env1), s2 ->

equal_aux ((assoc x1 env1 , env1), s2)

| s1, (Var x2 , env2) ->

equal_aux (s1, (assoc x2 env2 , env2))

| (Int i1, env1), (Int i2 , env2) -> i1 = i2

| (Inj (inj1 , e3), env1), (Inj (inj2 , e4), env2)

-> inj1 = inj2 &&

equal_aux ((e3, env1), (e4, env2))

| (Pair(e1 , e2), env1), (Pair(e3, e4), env2) ->

equal_aux ((e1, env1), (e3, env1)) &&

equal_aux ((e1, env1), (e3, env1))

| _ -> failwith "type error"

7.4 Implementation

We have implemented an interpreter for CoCaml. The implementation is about

5000 lines of OCaml. We have also used CoCaml on a number of examples, of which

we have presented a few here. So far we have written about 1500 lines of CoCaml.

The implementation is provided in the supplementary material.

7.4.1 Overview

In this section, we explain how the translation of the construct corec[solver]

is implemented. Briefly, the body of the function is partially evaluated, replacing

recursive calls by variables, and this forms the right-hand side of an equation. The

generated equations are then solved using the parameter solver.

175

Note that equations can only be correctly generated if all the recursive calls are

applied to an argument, and none of them are nested. This argument needs to be

explicit, and examples such as

let corec[constructor] alternating_bools

= false :: map not alternating_bools

are thus ruled out. Right-hand sides can contain calls to previously defined corec

functions as long as they are not nested.

When a function f is defined using the corec keyword, it is bound in the current

environment. For simplicity, we impose the restriction that f take only one argu-

ment (by forbidding curried definitions with the corec keyword). This is a mild

restriction, as this argument can be a tuple. Also, because of how functions defined

with corec are evaluated, we disallow nested recursive calls to f .

The interesting part occurs when the function f is called on an argument a.

Since our language is call-by-value, a is first evaluated and bound in the current

environment. We then proceed to generate the recursive equations that the value of

f(a) must satisfy.

7.4.2 Partial Evaluation

Partial evaluation is much like normal evaluation except when encountering a re-

cursive call to f . When such a recursive call f(aj) is encountered, its argument is

evaluated, and the call is replaced by a variable xj corresponding to aj. The vari-

able xj might be fresh if aj had not been seen before, or it might be the one already

associated with aj.

Coming back up the abstract syntax tree, some operations cannot be performed.

If the condition of an if statement was only partially evaluated, we cannot know

176

which branch to evaluate next; the same thing happens for the condition of a while

loop or an argument that is pattern-matched.

Particular care must be taken when evaluating the \&\& and || constructs.

These are usually implemented lazily. If the first argument of \&\& evaluates to

false, then it should return false. But if it only partially evaluates, then the

second argument cannot be evaluated. However, we choose to partially evaluate it

anyway, in case it contains recursive calls; thus our implementations of \&\& and ||

in the partial evaluator are not strictly lazy.

7.4.3 Equality of Regular Coinductive Terms

Equality of values, and in particular equality of cyclic data structures, plays a central

role in the process of generating the equations corresponding to the call of a recursive

function. A new equation is generated for each recursive call whose argument has

not been previously seen. To assess whether the argument has been previously

seen, a set of objects previously encountered is maintained. At each new recursive

call, the argument is tested for membership in this set by testing equality with each

member of the set. To ensure termination, equality on values that are observationally

equivalent must return true.

Unfortunately, OCaml’s documentation tells us that “equality between cyclic

data structures may not terminate.” In practice, the OCaml equality test returns

false if it can find a difference in finite time, otherwise continues looping forever.

In short, it never returns true when the arguments are cyclic and bisimilar.

> let rec zeros = 0 :: zeros and ones = 1 :: ones;;

val zeros : int list = [0; 0; 0; 0; 0; 0; 0; ...]

val ones : int list = [1; 1; 1; 1; 1; 1; 1; ...]

177

> zeros = ones;;

- : bool = false

> zeros = zeros;; (* does not terminate *)

> let rec zeros2 = 0 :: 0 :: zeros2 ;;

val zeros2 : int list = [0; 0; 0; 0; 0; 0; 0; ...]

> zeros = zeros2 ;; (* does not terminate *)

We would like to create a new equality, simply denoted =, that would work the

same as in OCaml on every value except cyclic data structures. On cyclic data

structures, this equality should correspond to observational equality, so that both

calls zeros = zeros and zeros = zeros2 above should return true. Note that

the OCaml physical identity relation == is not suitable: zeros == zeros2 would

return false. More importantly, even two instances of a pair of integers formed

at different places in the program would not be equal under ==, although they are

observationally equivalent.

To allow cyclic data structures and recursive functions, values are represented

internally with capsules. We are thus interested in creating observational equality

on capsules. Recall that capsules are essentially finite coalgebras, finite coalgebraic

representations of a regular closed λ-coterm. Let us describe the equality algorithm

on a simplification of our language where value expressions can only be variables,

literal integers, injections into a sum type or tuples.

Let Cap be the set of capsules. The domain of the equality is the set of pairs of

capsules – Cap2 = Cap× Cap. The codomain is the two-element Boolean algebra 2.

The diagram (5.1) is instantiated to

178

Cap2
2

2+ Cap2 + list (Cap2) 2+ 2+ list 2

h

γ

id2 + h+ map h

α

where the functor is FX = 2+X + list X. Here, list X denotes lists of elements of

type X, and the map function iterates a function over a list, returning a list of the

results.

The function γ matches on the first component of each capsule distinguishing

between the base cases and then ones in which equality needs to be recursively

determined. If they are both literal integers, it returns ι1(true) if they are equal

and ι1(false) otherwise. If either one is a variable, it looks up its value in the

corresponding environment. If they are injections of e1 and e2, it returns ι2(e1, e2).

If they are tuples, it creates a list l of pairs whose nth element is the pair of the

nth elements of the first and second tuple and returns ι3(l). The function α, which

processes the results of recursive calls, is the identity on the first two projections,

and on ι3(l) returns the conjunction of all Boolean values in the list l, that is true if

all the elements of l are true, false otherwise.

The naive algorithm given by this diagram is quadratic and it compares all pairs

of variables in the capsules. However it turns out that we can see the capsules as

finite automata, and they are equal if and only if their corresponding automata are

equivalent. There is a known nα(n) algorithm by Hopcroft and Karp [HK71], where

α is the inverse of the Ackermann function.2

2Hopcroft and Karp initially thought the algorithm was linear, but the complexity was later

corrected to nα(n)

179

7.5 Conclusions

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are simi-

lar in many ways. They are defined in the same way by recursive type equations,

algebraic types as least (or initial) solutions and coalgebraic types as greatest (or

final) solutions. Because of this similarity, one would like to program with them in

the same way, by defining functions by structural recursion using pattern match-

ing. However, because of the non-well-foundedness of coalgebraic data, it must be

possible for the programmer to circumvent the standard semantics of recursion and

specify alternative solution methods for recursive equations. Up to now, there has

been little programming language support for this.

In this chapter we have presented CoCaml, an extension of OCaml with new

programming language constructs to address this issue. We have shown through

numerous examples that coalgebraic types can be useful in many applications and

that computing with them is in most cases no more difficult than computing with

algebraic types. Although these alternative solution methods are nonstandard, they

are quite natural and can be specified in succinct ways that fit well with the familiar

style of recursive functional programming.

Chapter 8

Related Work

Many of the problems addressed in this dissertation — representing and reasoning

about the state of computation, reasoning about locality, and computing with coin-

ductive types — have been addressed before, with varying degrees of success. This

chapter presents previous work in those topics, and highlights the differences with

our work.

8.1 Representation of the state of computation

Reasoning about the state of computation has been studied for decades and we only

present here the major historical steps. There is much previous work on reasoning

about the local state and references [FH92a,MT92,Pit97,Pit00,PS93,PS98]. State

is typically modeled by some form of heap from which storage locations can be allo-

cated and deallocated [HMT84,MT,MT89a,MT91,MS77,Sco72,Sto81]. Others use

game semantics to reason about local state [AHM98,AM96,Lai04]. Moggi [Mog91]

uses monads to model state. Our approach is most closely related to the work of

Mason and Talcott [MT, MT89a, MT91], Felleisen and Hieb [FH92a], to the infini-

180

181

tary λ-calculus [BK09, KdV05], and especially to the syntactic theories of control

and state of Felleisen, Findler, and Flatt [FFF09]. Abadi, Cardelli, Curien and Lévy

study substitutions explicitly [ACCL91], while Curien develops a calculus based on

closures [Cur91]. Moran and Sands develop an abstract machine to handle the

call-by-need λ-calculus [MS99]. Objects can be modeled as collections of mutable

bindings, as for example in the ς-calculus of Abadi and Cardelli [AC96]. In Chap-

ters 2 and 3, we have avoided the introduction of mutable datatypes other than

λ-terms in order to develop the theory in its simplest form and to emphasize that

no auxiliary datatypes are needed to provide a basic operational semantics for a

statically-scoped higher-order language with functional and imperative features.

8.2 Separation logic

There are two main differences between our work of Chapter 4 and the previous work

on separation logic. In previous work, the authors usually adopt either an impera-

tive, C-style programming language with low-level heap operations, or a functional,

ML-style programming language with immutable variables and explicit references.

According to Mason and Talcott [MT89b], in functional languages there are two

approaches to introducing objects with memory: the LISP approach, where all vari-

ables are mutable, and the ML approach, where all variables are immutable and

references are introduced. One of the reasons why the ML view is usually chosen for

separation logic on functional programs is that having immutable variables is the

only way to get a correct semantics based on closures [Pot12]. By using capsules

instead, we are able to use mutable variables in the style of LISP.

The second main difference in this work is that we insist that all capsule envi-

ronments σ are closed, i.e., that every free variable appearing in a σ(x) should be

182

defined in σ. To us, this seems like a very natural thing. But as far as we know,

none of the previous work requires anything like this. When using C-style languages

with an environment and a heap, writing down a similar condition would require

both the environment and the heap, whereas the separation logic definitions usually

only use heaps. Even Neelakantan Krishnaswami et al. [KBAR07], though using

an ML-style language, explicitly say that they permit dangling pointers as long as

the pointers themselves are well typed. Note that, if trying to relate the semantics

of capsules with, say, a more traditional semantics using closures and a heap, the

capsule environment behaves like a heap rather than like an environment in the

traditional sense, as we saw in Chapter 3.

The original work on separation logic, summarized by Reynolds [Rey02], uses an

imperative, C-style programming language with low-level commands and already

gives a proof of a version of the frame rule.

Our work is most closely related to work by Krishnaswami, Birkedal, Aldrich

and Reynolds [KBAR07, Kri10], who give a separation logic for ML. However, our

system allows mutable variables in the style of LISP, whereas theirs uses explicit

references allocated in an explicit heap.

Birkedal, Torp-Smith and Yang [BTSY06] also study the frame rule in the con-

text of a higher-order language, idealized Algol extended with heaps, but their stack

variables are immutable as well.

There has been some work on so-called higher-order stores [RS06, BRSY08,

SBRY09], where some code can be stored in a heap cell. Because any λ-abstractions

can be stored in the environment, and executing some of them can have side-effects,

our setup naturally supports higher-order stores.

183

8.3 Non-Well-Founded Computation

The work of Chapters 5, 6 and 7 was inspired by work on recursive coalgebras [ALM07]

and Elgot algebras [AMV06]. In Chapter 5, we have extended and clarified the re-

sults in [ALM07] by providing a different proof that works on a larger class of func-

tors, as well as provided several examples of functions defined using this scheme.

The theoretical results of Adámek, Lücke, and Milius [ALM07] and the results of

Chapters 6 and 7 are concerned with the properties of the domain C ensuring unique

solutions to the diagram (5.1). Capretta, Uustalu and Vene [CUV09] studied the

dual problem of characterizing properties of the codomain A ensuring this property.

The work of Adámek, Milius, and Velebil on Elgot algebras [AMV06] is relevant

to our work on recursive definitions that do not have unique solutions. Elgot alge-

bras provide specified canonical solutions rather than unique ones. The canonical

solutions must satisfy two axioms, the first ensuring that solutions are independent

of the representation of the input and are thus well-defined on a final coalgebra,

and the second that allows multiple fixpoints to be parameterized and computed se-

quentially. The latter property gives an alternative approach to mutually recursive

functions.

Syme [Sym06] describes the “value recursion problem” and proposes an approach

involving laziness and substitution, eschewing mutability. He also gives a formal

calculus for reasoning about the system, along with several examples. One major

concern is with side effects, but this is not a particular concern for us. His ap-

proach is not essentially coalgebraic, as bisimilar objects are not considered equal.

Whereas he must perform substitution on the circular object, we can use variable

binding in the environment, as this is invisible with respect to bisimulation, which is

correspondingly much simpler. He also claims that “compelling examples of the im-

184

portance of value recursion have been missing from the literature”. We have tried

to fill the gap in this dissertation. Many more examples appear in other works,

notably in work of Ancona which we discuss below.

Sperber and Thiemann [ST98] propose replacing ref cells with a safe pointer

mechanism for dealing with mutable objects. Again, this is not really coalgebraic.

They state that “ref cells, when compared to mechanisms for handling mutable

data in other programming languages, impose awkward restrictions on programming

style,” a sentiment with which we wholeheartedly agree.

Capsule semantics address the same issues as Felleisen’s and Hieb’s theories of

syntactic state [FH92b], but capsules are considerably simpler. A major advantage

is the elimination of the explicit context present in [FH92b].

Hirschowitz, Leroy, and Wells [HLW03] suggest a safe initialization method for

cyclic data structures. Again, their approach is not coalgebraic and uses substitu-

tion, which precludes further modification of the data objects once they are created.

Close to our work is the recent paper by Widemann [yW11], which is explicitly

coalgebraic. He uses final coalgebras to interpret datatype definitions in a heap-

based model with call-by-value semantics. Circular data objects are represented by

cycles of pointers created by substitution. The main focus is low-level implemen-

tation of evaluation strategies, including cycle detection, and examples are mainly

search problems. He also proposes a “front-end language” constructs as an impor-

tant problem for future work, which is one of the issues we have addressed here.

The question of equality of circular data structures in OCaml has been subject of

investigation in, e.g, [Gre10], where the cyclist library can be found. The cyclist

library provides some functions on infinite lists in OCaml. However, this is limited

to lists and does not handle any other coinductive type. Another relevant paper

185

where functions on lists in an ML like language are discussed is [CP98]. There

is also work in Scheme [AD08] which defines observational equality for trees and

graphs. Our language constructs could also be easily transferred to Scheme.

In the area of logic programming, similar challenges have been tackled. Coinduc-

tive logic programming (coLP) [SMB+06,SMB+07] has been recently introduced as

a step forward toward developing logic programs containing both finite and regular

coinductive terms. The operational semantics is obtained by computing the great-

est fixed point of a logic program. Inspired by coLP, Ancona and Zucca defined

corecursive FeatherWeight Java (coFJ) [AZ12a] which extends FeatherWeight Java

with language support for cyclic structures. In [AZ12b] they provide a translation

from coFJ into coLP, clarifying the connections between the two frameworks, and,

more notably, providing an effective implementation of coFJ. In [ZA13], they define

a type system for coFJ that allows the user to specify that certain methods are not

allowed to return undetermined when the solution of the equation system is not

unique. Ancona has also improved the state of the art on regular corecursion in

Prolog [Anc12], by extending the interpreter with a new clause that enables simpler

definitions of coinductive predicates.

Work on cyclic structures in lazy languages can be found in e.g. [FS96, TW01,

dSOC12,GHUV06]. In these works, explicit modeling of back pointers (and visited

nodes) is used, requiring for instance the use of nested datatypes, and no new

program construct is proposed. In our work, we do not touch the datatype definition:

the cyclic structure of an object is detected automatically.

Chapter 9

Summary and Future Directions

This dissertation has presented capsules, a simple algebraic representation of the

state of computation for a programming language with both functional and impera-

tive paradigms. We have shown how capsules are the mathematical concept behind

closures, and how they can be used in logic and verification, with the example

of separation logic. Capsules also provide a clean way of representing coalgebraic

datatypes. This has helped us design programming language constructs to handle

coalgebraic datatypes in a way similar to the way we handle algebraic datatypes.

These constructs are implemented in the CoCaml programming language.

However, these results do not close the book on higher-order imperative pro-

gramming languages and non-well-founded computation. On the contrary, they can

be extended in many directions. This chapter identifies future areas of research.

A capsule-based verification system for Javascript. In chapter 4, we just

scratched the surface on capsules and verification. We believe that capsules, by

their simplicity, can help in designing verification systems for languages with both

functional and imperative paradigms. As an application, we would like to design a

186

187

verification method for Javascript based on capsules.

Abstract machines and Capsules. Landin’s SECD machine was the first model

of an abstract machine for the λ-calculus [Lan64,Dan05]. It has been highly influen-

tial in the treatment of functional programs, and we would like to develop a similar

framework for higher-order imperative programming languages, by developing an

abstract machine around capsules.

Static checking of functions on coinductive types. The current implemen-

tation of CoCaml (version 4) provides very few static checks on functions defined

with the corec keyword. For example, a function defined with the constructor

solver can only return a result if every recursive call is the argument of a construc-

tor, but this is not statically checked. This constructor solver is closely related to

the cofix keyword of the Coq proof assistant [Cdt13], which checks this property

statically. However, for other solvers, it is not clear what the static checks should

be and what they could guarantee. We would like to explore such static checks, and

be able to statically and automatically rule out some wrong definitions.

More solvers and examples in CoCaml. In this dissertation we have already

presented many examples where CoCaml can be used. We are currently exploring

the possibility of defining a solver that would define coinductive results by iteration,

thus having some properties of both the constructor and the iterator solvers.

This solver would be helpful to define the filter function on streams more intu-

itively, as well as defining operations on infinite floats similar to the operations on

p-adic numbers we currently have.

188

CoCaml programs seen as proofs. In Coq, the cofix keyword can define both

coinductive terms and proofs using corecursion [Cdt13,HNDV13]. Using the proofs-

as-programs principle, we would like to explore what programs defined with the

corec keyword look like when we see them as proofs, and whether they could lead

to interesting new proof principles.

Appendix A

Derivations of examples

In this appendix we provide the derivations of the examples found in Chapters 2

and 3.

A.1 Capsules

Example 2.5.1 (let x = 1 in let f = λy.x in let x = 2 in f 0) ∗→ca 1

Proof.

〈 let x = 1 in let f = λy.x in let x = 2 in f 0, [] 〉

→ca 〈 let f = λy.x′ in let x = 2 in f 0, [x′ = 1] 〉

→ca 〈 let x = 2 in f ′ 0, [x′ = 1, f ′ = λy.x′] 〉

→ca 〈 f ′ 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉

→ca 〈 (λy.x′) 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉

→ca 〈 x′, [x′ = 1, f ′ = λy.x′, x′′ = 2, y′ = 0] 〉

→ca 〈 1, [x′ = 1, f ′ = λy.x′, x′′ = 2, y′ = 0] 〉

2

189

190

Example 2.5.2 (let x = 1 in let f = λy.x in x := 2; f 0) ∗→ca 2

Proof.

〈 let x = 1 in let f = λy.x in x := 2; f 0, [] 〉

→ca 〈 let f = λy.x′ in x′ := 2; f 0, [x′ = 1] 〉

→ca 〈 x′ := 2; f ′ 0, [x′ = 1, f ′ = λy.x′] 〉

∗→ca 〈 f ′ 0, [x′ = 2, f ′ = λy.x′] 〉

→ca 〈 (λy.x′) 0, [x′ = 2, f ′ = λy.x′] 〉

→ca 〈 x′, [x′ = 2, f ′ = λy.x′, y′ = 0] 〉

→ca 〈 2, [x′ = 2, f ′ = λy.x′, y′ = 0] 〉

2

Example 2.5.3 (let x = 1 in let f = (let x = 2 in λy.x) in f 0) ∗→ca 2

Proof.

〈 let x = 1 in let f = (let x = 2 in λy.x) in f 0, [] 〉

→ca 〈 let f = (let x = 2 in λy.x) in f 0, [x′ = 1] 〉

→ca 〈 let f = λy.x′′ in f 0, [x′ = 1, x′′ = 2] 〉

→ca 〈 f 0, [x′ = 1, x′′ = 2, f = λy.x′′] 〉

→ca 〈 (λy.x′′) 0, [x′ = 1, x′′ = 2, f = λy.x′′] 〉

→ca 〈 x′′, [x′ = 1, x′′ = 2, f = λy.x′′, y′ = 0] 〉

→ca 〈 2, [x′ = 1, f = λy.x′, y′ = 0] 〉

2

Example 2.5.4 (let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0) ∗→ca 2

191

Proof.

〈 let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0, [] 〉

→ca 〈 let f = λy.x in let x = 2 in f := λy.x; f 0, [x′ = 1] 〉

→ca 〈 let x = 2 in f ′ := λy.x; f ′ 0, [x′ = 1, f ′ = λy.x′] 〉

→ca 〈 f ′ := λy.x′′; f ′ 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉

→ca 〈 f ′ 0, [x′ = 1, f ′ = λy.x′′, x′′ = 2] 〉

→ca 〈 (λy.x′′) 0, [x′ = 1, f ′ = λy.x′′, x′′ = 2] 〉

→ca 〈 x′′, [x′ = 1, f ′ = λy.x′′, x′′ = 2, y′ = 0] 〉

→ca 〈 2, [x′ = 1, f ′ = λy.x′′, x′′ = 2, y′ = 0] 〉

2

Example 2.5.5 (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3) ∗→ca 6

Proof. In this example e stands for λn.if n = 0 then 1 else f(n− 1)× n.

〈 let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3, [] 〉

∗→ca 〈 f 3, [f = λn.if n = 0 then 1 else f(n− 1)× n] 〉

∗→ca 〈 if n1 = 0 then 1 else f(n1 − 1)× n1, [f = e, n1 = 3] 〉

∗→ca 〈 (f 2)× n1, [f = e, n1 = 3] 〉

∗→ca 〈 (if n2 = 0 then 1 else n2 × f(n2 − 1))× n1, [f = e, n1 = 3, n2 = 2] 〉

∗→ca 〈 (f 1)× n2 × n1, [f = e, n1 = 3, n2 = 2] 〉

∗→ca 〈 (if n3 = 0 then 1 else n3 × f(n3 − 1))× n2 × n1,

[f = e, n1 = 3, n2 = 2, n3 = 1] 〉

∗→ca 〈 (f 0)× n3 × n2 × n1, [f = e, n1 = 3, n2 = 2, n3 = 3] 〉

∗→ca 〈 (if n4 = 0 then 1 else n4 × f(n4 − 1))× n3 × n2 × n1,

192

[f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉

∗→ca 〈 1× n3 × n2 × n1, [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉

∗→ca 〈 6, [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉

2

A.2 Closures

Example 3.2.5 (let x = 1 in let f = λy.x in let x = 2 in f 0) ∗→cl 1

Proof.

〈 let x = 1 in let f = λy.x in let x = 2 in f 0, [], [] 〉

→cl 〈 {λx.let f = λy.x in let x = 2 in f 0, []} 1, [], [] 〉

→cl 〈 let f = λy.x in let x = 2 in f 0 �, [x = `1] :: [], [`1 = 1] 〉

→cl 〈 {λf.let x = 2 in f 0, [x = `1]} λy.x �, [x = `1] :: [], [`1 = 1] 〉

→cl 〈 {λf.let x = 2 in f 0, [x = `1]} {λy.x, [x = `1]} �, [x = `1] :: [],

[`1 = 1] 〉

→cl 〈 let x = 2 in f 0 � �, [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}] 〉

→cl 〈 {λx.f 0, [x = `1, f = `2]} 2 � �, [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}] 〉

→cl 〈 f 0 � � �, [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2] 〉

→cl 〈 {λy.x, [x = `1]} 0 � � �,

193

[f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2] 〉

→cl 〈 x � � � �,

[x = `1, y = `4] :: [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

→cl 〈 1 � � � �,

[x = `1, y = `4] :: [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

→cl 〈 1 � � �, [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

→cl 〈 1 � �, [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

→cl 〈 1 �, [x = `1] :: [], [`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

→cl 〈 1, [], [`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

2

Example 3.2.6 (let x = 1 in let f = λy.x in x := 2; f 0) ∗→cl 2

Proof.

〈 let x = 1 in let f = λy.x in x := 2; f 0, [], [] 〉

→cl 〈 {λx.let f = λy.x in x := 2; f 0, []} 1, [], [] 〉

→cl 〈 let f = λy.x in x := 2; f 0 �, [x = `1] :: [], [`1 = 1] 〉

→cl 〈 {λf.x := 2; f 0, [x = `1]} λy.x �, [x = `1] :: [], [`1 = 1] 〉

→cl 〈 {λf.x := 2; f 0, [x = `1]} {λy.x, [x = `1]} �, [x = `1] :: [], [`1 = 1] 〉

194

→cl 〈 x := 2; f 0 � �, [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 1, `2 = {λy.x, [x = `1]}] 〉

∗→cl 〈 f 0 � �,[x = `1, f = `2] :: [x = `1] :: [], [`1 = 2, `2 = {λy.x, [x = `1]}] 〉

→cl 〈 {λy.x, [x = `1]} 0 � �, [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 2, `2 = {λy.x, [x = `1]}] 〉

→cl 〈 x � � �, [x = `1, y = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉

→cl 〈 2 � � �, [x = `1, y = `3] :: [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉

→cl 〈 2 � �, [x = `1, f = `2] :: [x = `1] :: [],

[`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉

→cl 〈 2 �, [x = `1] :: [], [`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉

→cl 〈 2, [], [`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉

2

This final example is particularly interesting as it shows how nested � allow

to interpret the same variable in different scopes. In all the example e stands for

{λn.if n = 0 then 1 else f(n − 1) × n, [f = `1]}, and d stands for {λn.n, []}, a

dummy value used when creating the recursive function f .

Example 3.2.7 (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3) ∗→cl 6

195

Proof.

〈 let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3, [], [] 〉

∗→cl 〈 f := λn.if n = 0 then 1 else f(n− 1)× n; f 3 �, [f = `1] :: [], [`1 = d] 〉

∗→cl 〈 f 3 �, [f = `1] :: [], [`1 = e] 〉

∗→cl 〈 if n = 0 then 1 else f(n− 1)× n � �, [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3] 〉

∗→cl 〈 (f 2)× n � �, [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3] 〉

∗→cl 〈 (if n = 0 then 1 else n× f(n− 1) �)× n � �,

[f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2] 〉

∗→cl 〈 ((f 1)× n �)× n � �, [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2] 〉

∗→cl 〈 ((if n = 0 then 1 else n× f(n− 1) �)× n �)× n � �,

[f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2, `4 = 1] 〉

∗→cl 〈 (((f 0)× n �)× n �)× n � �,

[f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2, `4 = 1] 〉

∗→cl 〈 (((if n = 0 then 1 else n× f(n− 1) �)× n �)× n �)× n � �,

[f = `1, n = `5] :: [f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] ::

[f = `1] :: [], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

196

→cl 〈 (((if 0 = 0 then 1 else n× f(n− 1) �)× n �)× n �)× n � �,

[f = `1, n = `5] :: [f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] ::

[f = `1] :: [], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

→cl 〈 (((1 �)× n �)× n �)× n � �,

[f = `1, n = `5] :: [f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] ::

[f = `1] :: [], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

→cl 〈 ((1× n �)× n �)× n � �,

[f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

∗→cl 〈 ((1× 1)× n �)× n � �,[f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

∗→cl 〈 ((1× 1)× 2)× n � �, [f = `1, n = `2] :: [f = `1] :: [],

[`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

∗→cl 〈 6, [], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉

2

Bibliography

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
Cited on page 181.

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy. Explicit substitutions. J. Funct. Program., 1(4):375–416, 1991.
Cited on page 181.

[AD08] Michael D. Adams and R. Kent Dybvig. Efficient nondestructive equality
checking for trees and graphs. In Proc. 13 ACM SIGPLAN Int. Conf.
Functional Programming, pages 179–188, 2008. Cited on page 185.

[AH01] Kamal Aboul-Hosn. Programming with private state. Honors Thesis,
The Pennsylvania State University, December 2001. Cited on page 10.

[AHK06] Kamal Aboul-Hosn and Dexter Kozen. Relational semantics for higher-
order programs. In Tarmo Uustalu, editor, Proc. 8th Int. Conf. Math-
ematics of Program Construction (MPC’06), volume 4014 of Lecture
Notes in Computer Science, pages 29–48. Springer, July 2006. Cited on
page 10.

[AHK07] Kamal Aboul-Hosn and Dexter Kozen. Local variable scoping and
Kleene algebra with tests. J. Log. Algebr. Program., 2007. DOI:
10.1016/j.jlap.2007.10.007. Cited on page 10.

[AHM98] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract
game semantics for general references. In LICS ’98: Proceedings of the
13th Annual IEEE Symposium on Logic in Computer Science, pages
334–344, Washington, DC, USA, 1998. IEEE Computer Society. Cited
on page 180.

[ALM07] Jǐŕı Adámek, Dominik Lücke, and Stefan Milius. Recursive coalgebras of
finitary functors. Theoretical Informatics and Applications, 41:447–462,
2007. Cited on pages 6, 92, 94, 95, 96, 100, 101, 103, 107, 109, 113,
115, and 183.

197

198

[AM96] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a
fully abstract game semantics for idealized ALGOL with active expres-
sions. Electr. Notes Theor. Comput. Sci., 3, 1996. Cited on page 180.

[AMV06] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Elgot algebras. Log. Meth-
ods Comput. Sci., 2(5:4):1–31, 2006. Cited on pages 92, 95, 106, 115,
and 183.

[Anc12] Davide Ancona. Regular corecursion in Prolog. In Sascha Ossowski and
Paola Lecca, editors, SAC, pages 1897–1902. ACM, 2012. Cited on
page 185.

[AZ12a] Davide Ancona and Elena Zucca. Corecursive Featherweight Java. In
FTfJP’012 - Formal Techniques for Java-like Programs, 2012. Cited on
page 185.

[AZ12b] Davide Ancona and Elena Zucca. Translating Corecursive Featherweight
Java in Coinductive Logic Programming. In Co-LP 2012 - A workshop
on Coinductive Logic Programming, 2012. Cited on page 185.

[Bak11] Andrew Baker. An introduction to p-adic numbers and p-adic analysis.
http://www.maths.gla.ac.uk/~ajb/dvi-ps/padicnotes.pdf, March
2011. School of Mathematics and Statistics, University of Glasgow.
Cited on page 166.

[BBTS07] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-hyperdoctrines,
higher-order separation logic, and abstraction. ACM Trans. Program.
Lang. Syst., 29, August 2007. Cited on pages 77 and 88.

[BCY05] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables as
resource in separation logic. In Proc. 21st Conf. Math. Found. Program-
ming Semantics, pages 247–276, 2005. Cited on page 77.

[BK09] Henk P. Barendregt and Jan Willem Klop. Applications of infinitary
lambda calculus. Inf. and Comput., 207(5):559–582, 2009. Cited on
pages 10 and 181.

[BRSY08] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, and Hongseok
Yang. A simple model of separation logic for higher-order store. In Pro-
ceedings of the 35th international colloquium on Automata, Languages
and Programming, Part II, ICALP ’08, pages 348–360, Berlin, Heidel-
berg, 2008. Springer-Verlag. Cited on page 182.

[BTSY06] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of
separation-logic typing and higher-order frame rules for algol-like lan-
guages. CoRR, abs/cs/0610081, 2006. Cited on page 182.

http://www.maths.gla.ac.uk/~ajb/dvi-ps/padicnotes.pdf

199

[BZ02] Gérard Boudol and Pascal Zimmer. Recursion in the call-by-value
lambda-calculus. In Zoltán Ésik and Anna Ingólfsdóttir, editors, FICS,
volume NS-02-2 of BRICS Notes Series, pages 61–66. University of
Aarhus, 2002. Cited on page 153.

[Cap07] Venanzio Capretta. An introduction to corecursive algebras.
http://www.cs.ru.nl/~venanzio/publications/brouwer_seminar_

4_12_2007.pdf, 2007. Cited on pages 96 and 113.

[Cap11] Venanzio Capretta. Coalgebras in functional programming and type the-
ory. Theor. Comput. Sci., 412(38):5006–5024, 2011. Cited on page 162.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In 4th ACM SIGPLAN-SIGACT Symp. Principles
of Programming Languages, pages 238–252, Los Angeles, 1977. ACM
Press, New York. Cited on page 127.

[Cdt13] The Coq development team. The Coq proof assistant reference manual.
2013. Cited on pages 187 and 188.

[cH98] Naim Çagman and J. Roger Hindley. Combinatory weak reduction in
lambda calculus. Theor. Comput. Sci., 198(1-2):239–247, 1998. Cited
on page 15.

[Cho10] Stephen Chong. Lecture notes on abstract interpretation. http://www.
seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf,
2010. Harvard University. Cited on page 127.

[CoC12] CoCaml project. http://www.cs.cornell.edu/Projects/CoCaml/,
December 2012. Cited on page 121.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local ac-
tion and abstract separation logic. In Proc. 22nd Annual IEEE Symp.
Logic in Computer Science (LICS07), pages 366–378. IEEE, 2007. Cited
on pages 77, 78, 79, 82, and 84.

[CP98] Paul Caspi and Marc Pouzet. A co-iterative characterization of syn-
chronous stream functions. Electr. Notes Theor. Comput. Sci., 11:1–21,
1998. Cited on page 185.

[Cur91] Pierre-Louis Curien. An abstract framework for environment machines.
Theor. Comput. Sci., 82(2):389–402, 1991. Cited on page 181.

[CUV09] Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Corecursive alge-
bras: A study of general structured corecursion. In Marcel Oliveira and
Jim Woodcock, editors, 12th Brazilian Symp. Formal Methods, volume

http://www.cs.ru.nl/~venanzio/publications/brouwer_seminar_4_12_2007.pdf
http://www.cs.ru.nl/~venanzio/publications/brouwer_seminar_4_12_2007.pdf
http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf
http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf
http://www.cs.cornell.edu/Projects/CoCaml/

200

5902 of Lecture Notes in Computer Science, pages 84–100, Berlin, 2009.
Springer. Cited on pages 92, 113, and 183.

[Dan05] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In
Implementation and Application of Functional Languages, pages 52–71.
Springer, 2005. Cited on page 187.

[dSOC12] Bruno C. d. S. Oliveira and William R. Cook. Functional programming
with structured graphs. In Peter Thiemann and Robby Bruce Findler,
editors, ICFP, pages 77–88. ACM, 2012. Cited on page 185.

[Epp99] Adam Eppendahl. Coalgebra-to-algebra morphisms. Electronic Notes
in Theoretical Computer Science, 29, 1999. Not cited

[FFF09] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. MIT Press, 2009. Cited on pages 10
and 181.

[FH92a] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science,
103:235–271, 1992. Cited on pages 10 and 180.

[FH92b] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science,
103:235–271, 1992. Cited on page 184.

[FMS05] Maribel Fernández, Ian Mackie, and François-Régis Sinot. Closed re-
duction: explicit substitutions without alpha-conversion. Mathematical
Structures in Computer Science, 15(2):343–381, 2005. Cited on page 15.

[FS96] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space). In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’96, pages 284–294, New York,
NY, USA, 1996. ACM. Cited on page 185.

[GHUV06] N. Ghani, M. Hamana, T. Uustalu, and V. Vene. Representing cyclic
structures as nested datatypes. In H. Nilsson, editor, Proc. of 7th Symp.
on Trends in Functional Programming, TFP 2006, pages 173–188. Univ.
of Nottingham, 2006. Cited on page 185.

[Gre10] Dmitry Grebeniuk. Library ocaml-cyclist. https://forge.

ocamlcore.org/projects/ocaml-cyclist/, June 2010. Cited on
page 184.

[GT74] J. A. Goguen and J. W. Thatcher. Initial algebra semantics. In 15th
Symp. Switching and Automata Theory, pages 63–77. IEEE, 1974. Cited
on page 149.

https://forge.ocamlcore.org/projects/ocaml-cyclist/
https://forge.ocamlcore.org/projects/ocaml-cyclist/

201

[HK71] John E Hopcroft and Richard M Karp. A linear algorithm for testing
equivalence of finite automata. Technical report, Cornell University,
1971. Cited on page 178.

[HK84] David Harel and Dexter Kozen. A programming language for the induc-
tive sets, and applications. Information and Control, 63(1–2):118–139,
1984. Cited on pages 96 and 115.

[HLW03] Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation of ex-
tended recursion in call-by-value functional languages. In PPDP 2003,
pages 160–171, 2003. Cited on pages 152, 153, and 184.

[HMT84] Joseph Y. Halpern, Albert R. Meyer, and Boris A. Trakhtenbrot. The
semantics of local storage, or what makes the free-list free? In Proc. 11th
ACM Symp. Principles of Programming Languages (POPL’84), pages
245–257, New York, NY, USA, 1984. Cited on pages 2, 10, and 180.

[HNDV13] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The
power of parameterization in coinductive proof. In Proceedings of the
40th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 193–206. ACM, 2013. Cited on page 188.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for
mutable data structures. In Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’01, pages 14–26, New York, NY, USA, 2001. ACM. Cited on page 77.

[Jea11] Jean-Baptiste Jeannin. Capsules and closures. Electron. Notes Theor.
Comput. Sci., 276:191–213, September 2011. Cited on page 6.

[Jea12] Jean-Baptiste Jeannin. Capsules and closures: A small-step approach.
In R. L. Constable and A. Silva, editors, Kozen Festschrift, LNCS 7230,
pages 106–123. Springer-Verlag, April 2012. Cited on page 6.

[JK12a] Jean-Baptiste Jeannin and Dexter Kozen. Capsules and separation.
In Nachum Dershowitz, editor, Proc. 27th ACM/IEEE Symp. Logic in
Computer Science (LICS’12), pages 425–430, Dubrovnik, Croatia, June
2012. IEEE. Cited on page 6.

[JK12b] Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. In
Martin Kutrib, Nelma Moreira, and Rogério Reis, editors, Proc. Conf.
Descriptional Complexity of Formal Systems (DCFS 2012), volume 7386
of Lecture Notes in Computer Science, pages 1–19, Braga, Portugal, July
2012. Springer. Cited on page 5.

[JKS12] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. CoCaml:
Programming with coinductive types. Technical Report http://hdl.

http://hdl.handle.net/1813/30798

202

handle.net/1813/30798, Computing and Information Science, Cornell
University, December 2012. Cited on page 7.

[JKS13a] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Language
constructs for non-well-founded computation. In Proceedings of the
22nd European conference on Programming Languages and Systems,
ESOP’13, pages 61–80, Berlin, Heidelberg, 2013. Springer-Verlag. Cited
on page 6.

[JKS13b] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Well-
founded coalgebras, revisited. Technical Report http://hdl.handle.

net/1813/33330, Computing and Information Science, Cornell Univer-
sity, May 2013. Cited on page 6.

[KBAR07] Neelakantan R. Krishnaswami, Lars Birkedal, Jonathan Aldrich, and
John C. Reynolds. Idealized ML and its separation logic. http://www.
cs.cmu.edu/~neelk/, 2007. Cited on page 182.

[KdV05] Jan W. Klop and Roel C. de Vrijer. Infinitary normalization. In S. Arte-
mov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, and J. Woods,
editors, We Will Show Them: Essays in Honour of Dov Gabbay, vol-
ume 2, pages 169–192. College Publications, 2005. Cited on pages 10
and 181.

[Koz11] Dexter Kozen. Realization of coinductive types. In Michael Mislove and
Joël Ouaknine, editors, Proc. 27th Conf. Math. Found. Programming
Semantics (MFPS XXVII), pages 148–155, Pittsburgh, PA, May 2011.
Elsevier Electronic Notes in Theoretical Computer Science. Cited on
pages 95, 96, 99, and 100.

[Koz12] Dexter Kozen. New. In Ulrich Berger and Michael Mislove, editors, Proc.
28th Conf. Math. Found. Programming Semantics (MFPS XXVIII),
pages 13–38, Bath, England, June 2012. Elsevier Electronic Notes in
Theoretical Computer Science. Cited on pages 42 and 153.

[Kri10] Neelakantan R. Krishnaswami. Verifying Higher-Order Imperative Pro-
grams with Higher-Order Separation Logic. PhD thesis, Carnegie Mellon
University, 2010. Cited on page 182.

[Lai04] James Laird. A game semantics of local names and good variables. In
Igor Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in
Computer Science, pages 289–303. Springer, 2004. Cited on page 180.

[Lam68] Joachim Lambek. A fixpoint theorem for complete categories. Mathe-
matische Zeitschrift, 103:151–161, 1968. Cited on page 101.

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, 1964. Cited on pages 11, 18, and 187.

http://hdl.handle.net/1813/30798
http://hdl.handle.net/1813/30798
http://hdl.handle.net/1813/33330
http://hdl.handle.net/1813/33330
http://www.cs.cmu.edu/~neelk/
http://www.cs.cmu.edu/~neelk/

203

[McC81] John McCarthy. History of LISP. In Richard L. Wexelblat, editor,
History of programming languages I, pages 173–185. ACM, 1981. Cited
on pages 16 and 18.

[ML71] Saunders Mac Lane. Categories for the Working Matematician.
Springer, 1971. Cited on page 99.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1), 1991. Cited on pages 2, 10, and 180.

[MS77] Robert Milne and Christopher Strachey. A Theory of Programming Lan-
guage Semantics. Halsted Press, New York, NY, USA, 1977. Cited on
pages 2, 10, and 180.

[MS99] Andrew Moran and David Sands. Improvement in a lazy context: An
operational theory for call-by-need. In POPL, pages 43–56, 1999. Cited
on page 181.

[MT] Ian Mason and Carolyn Talcott. Programming, transforming, and
proving with function abstractions and memories. Cited on pages 10
and 180.

[MT89a] Ian Mason and Carolyn Talcott. Axiomatizing operational equivalence
in the presence of side effects. In Fourth Annual Symposium on Logic
in Computer Science. IEEE, pages 284–293. IEEE Computer Society
Press, 1989. Cited on pages 10 and 180.

[MT89b] Ian Mason and Carolyn Talcott. Axiomatizing operational equivalence
in the presence of side effects. In Fourth Annual Symposium on Logic
in Computer Science. IEEE, pages 284–293. IEEE Computer Society
Press, 1989. Cited on page 181.

[MT91] Ian Mason and Carolyn Talcott. Equivalence in functional languages
with effects, 1991. Cited on pages 10 and 180.

[MT92] Ian A. Mason and Carolyn L. Talcott. References, local variables and
operational reasoning. In Seventh Annual Symposium on Logic in Com-
puter Science, pages 186–197. IEEE, 1992. Cited on page 180.

[O’H07] Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoret-
ical Computer Science, 375(1-3):271–307, May 2007. Cited on page 89.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local rea-
soning about programs that alter data structures. In Proceedings of
the 15th International Workshop on Computer Science Logic, CSL ’01,
pages 1–19, London, UK, 2001. Springer-Verlag. Cited on page 77.

204

[PB08] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstrac-
tion and inheritance. In Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’08, pages 75–86, New York, NY, USA, 2008. ACM. Cited on page 77.

[PBC06] Matthew Parkinson, Richard Bornat, and Cristiano Calcagno. Variables
as resource in hoare logics. In Proceedings of the 21st Annual IEEE
Symposium on Logic in Computer Science, pages 137–146, Washington,
DC, USA, 2006. IEEE Computer Society. Cited on page 77.

[Pit97] Andrew M. Pitts. Operationally-based theories of program equivalence.
In P. Dybjer and A. M. Pitts, editors, Semantics and Logics of Compu-
tation, Publications of the Newton Institute, pages 241–298. Cambridge
University Press, 1997. Cited on page 180.

[Pit00] Andrew M. Pitts. Operational semantics and program equivalence. Tech-
nical report, INRIA Sophia Antipolis, 2000. Lectures at the Interna-
tional Summer School On Applied Semantics, APPSEM 2000, Caminha,
Minho, Portugal, September 2000. Cited on page 180.

[Pot] Francois Pottier. Lazy least fixed points in ml. Available from pauillac.

inria.fr/~fpottier/publis/fpottier-fix.pdf. Cited on page 155.

[Pot08] François Pottier. Hiding local state in direct style: a higher-order anti-
frame rule. In Twenty-Third Annual IEEE Symposium on Logic In Com-
puter Science (LICS’08), pages 331–340, Pittsburgh, Pennsylvania, June
2008. Cited on page 88.

[Pot12] François Pottier, 2012. Private communication. Cited on page 181.

[PS93] Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or what’s new? In
Andrzej M. Borzyszkowski and Stefan Sokolowski, editors, MFCS, vol-
ume 711 of Lecture Notes in Computer Science, pages 122–141. Springer,
1993. Cited on page 180.

[PS98] Andrew M. Pitts and Ian D. B. Stark. Operational reasoning in functions
with local state. In A. D. Gordon and A. M. Pitts, editors, Higher
Order Operational Techniques in Semantics, pages 227–273. Cambridge
University Press, 1998. Cited on page 180.

[Rey00] John C. Reynolds. Intuitionistic reasoning about shared mutable data
structures. In J. Davies, B. Roscoe, and J. Woodcock, editors, Millennial
Perspectives in Computer Science, pages 303–321. Palgrave, 2000. Cited
on page 77.

pauillac.inria.fr/~fpottier/publis/fpottier-fix.pdf
pauillac.inria.fr/~fpottier/publis/fpottier-fix.pdf

205

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. 17th IEEE Symp. Logic in Computer Science
(LICS’02), pages 55–74. IEEE, 2002. Cited on pages 77, 78, 79, 80,
83, 85, and 182.

[RS06] Bernhard Reus and Jan Schwinghammer. Separation logic for higher-
order store. In In Proc. CSL, pages 575–590. Springer, 2006. Cited on
page 182.

[Rut00] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor.
Comput. Sci., 249:3–80, 2000. Cited on pages 26 and 28.

[SBRY09] Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok
Yang. Nested Hoare triples and frame rules for higher-order store. In In
Proceedings of the 18th EACSL Annual Conference on Computer Science
Logic, 2009. Cited on pages 88 and 182.

[Sco72] Dana S. Scott. Mathematical concepts in programmng language seman-
tics. In Proc. 1972 Spring Joint Computer Conferences, pages 225–34,
Montvale, NJ, 1972. AFIPS Press. Cited on pages 2, 10, and 180.

[SMB+06] Luke Simon, Ajay Mallya, Ajay Bansal, , and Gopal Gupta. Coinduc-
tive logic programming. In Sandro Etalle and Miros law Truszczyński,
editors, 22nd Int. Conf. Logic Programming (ICLP 2006), volume 4079
of Lecture Notes in Computer Science, pages 330–345. Springer, August
2006. Cited on page 185.

[SMB+07] Luke Simon, Ajay Mallya, Ajay Bansal, , and Gopal Gupta. Co-logic
programming: Extending logic programming with coinduction. In Lars
Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, edi-
tors, 34th Int. Colloq. Automata, Languages and Programming (ICALP
2007), volume 4596 of Lecture Notes in Computer Science, pages 472–
483. Springer, July 2007. Cited on page 185.

[SR07] Alexandra Silva and Jan J. M. M. Rutten. Behavioural differential equa-
tions and coinduction for binary trees. In Daniel Leivant and Ruy J.
G. B. de Queiroz, editors, WoLLIC, volume 4576 of Lecture Notes in
Computer Science, pages 322–336. Springer, 2007. Cited on page 162.

[SR10] Alexandra Silva and Jan J. M. M. Rutten. A coinductive calculus of
binary trees. Inf. Comput., 208(5):578–593, 2010. Cited on page 162.

[SS98] Gerald Jay Sussman and Guy L. Steele. Scheme: A interpreter for
extended lambda calculus. Higher-Order and Symbolic Computation,
11:405–439, 1998. 10.1023/A:1010035624696. Cited on page 45.

206

[ST98] Michael Sperber and Peter Thiemann. ML and the address operator.
In 1998 ACM SIGPLAN Workshop on ML, September 1998. Cited on
pages 152, 153, and 184.

[Sto81] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, Cambridge, MA, USA,
1981. Cited on pages 2, 10, and 180.

[SYB+10] Jan Schwinghammer, Hongseok Yang, Lars Birkedal, François Pottier,
and Bernhard Reus. A semantic foundation for hidden state. In FOS-
SACS, pages 2–17, 2010. Cited on page 88.

[Sym06] Don Syme. Initializing mutually referential abstract objects: The value
recursion challenge. In Proc. ACM-SIGPLAN Workshop on ML (2005).
Elsevier, March 2006. Cited on pages 152, 153, and 183.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Number 59 in Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
1999. Not cited

[TW01] Franklyn A. Turbak and J. B. Wells. Cycle therapy: A prescription for
fold and unfold on regular trees. In PPDP, pages 137–149. ACM, 2001.
Cited on page 185.

[Wik12] Wikipedia. p-adic numbers. http://en.wikipedia.org/w/index.php?
title=P-adic_number&oldid=553107165, 2012. Cited on page 166.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993. Cited on pages 35 and 127.

[YO02] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local rea-
soning. In M. Nielsen and U. Engberg, editors, Proc. 5th Foundations of
Software Science and Computation Structures (FOSSACS02), volume
2303 of Lecture Notes in Computer Science, pages 402–416. Springer-
Verlag, 2002. Cited on pages 77 and 83.

[yW11] Baltasar Trancón y Widemann. Coalgebraic semantics of recursion
on circular data structures. In Corina Cirstea, Monika Seisenberger,
and Toby Wilkinson, editors, CALCO Young Researchers Workshop
(CALCO-jnr 2011), pages 28–42, August 2011. Cited on pages 152
and 184.

[ZA13] Elena Zucca and Davide Ancona. Safe Corecursion in coFJ. In FT-
fJP’012 - Formal Techniques for Java-like Programs. 2013, 2013. Cited
on page 185.

http://en.wikipedia.org/w/index.php?title=P-adic_number&oldid=553107165
http://en.wikipedia.org/w/index.php?title=P-adic_number&oldid=553107165

	Introduction
	Capsules
	Non-Well-Founded Computation
	Thesis Outline

	I Capsules
	Computing with Capsules
	Introduction
	Definitions
	Capsules
	Scope, Free and Bound Variables

	Scoping Issues
	The -Calculus
	Dynamic Scoping
	Static Scoping with Closures
	Static Scoping with Capsules

	Soundness
	Evaluation Rules for Capsules
	-Reduction
	Soundness
	Closure Conversion

	A Functional/Imperative Language
	Expressions
	Types
	Small-Step Evaluation
	Garbage Collection
	Big-Step Evaluation

	Conclusion

	Capsules and Closures
	Introduction
	Closure semantics
	Definitions
	Big-step
	Small-step

	Equivalence of the semantics
	Definitions
	Big-step
	Small-step

	Capsules encode less information
	Discussion
	Capsules and Closures: a strong correspondence
	Suppression of the environment or the stack

	Capsules and Separation
	Introduction
	Assertions
	Partial Correctness
	Capsules and Separation Logic
	Definitions
	The Frame Rule
	Discussion
	Alternative Conditions

	Conclusion and Future Work

	II Non-Well-Founded Computation
	Well-Founded Coalgebras, Revisited
	Introduction
	Realization of Coinductive Types
	Directed Multigraphs
	Type Signatures
	Coalgebras and Realizations
	Final Coalgebras

	Characterization of Well-Founded Coalgebras
	Well-Founded Coalgebras
	Induction Principle
	Main Theorem
	Non-Well-Founded Coalgebras

	Well-Founded Examples
	Integer GCD
	Towers of Hanoi
	Mutually Recursive Functions: even-odd
	Ackermann Function

	Non-Well-Founded Examples
	Descending Sequences
	Alternating Turing Machines and IND Programs

	Discussion

	Language Constructs for Non-Well-Founded Computation
	Introduction
	Motivating Examples
	Substitution
	Probabilistic Protocols
	Abstract Interpretation
	Finite Automata

	A Framework for Non-Well-Founded Computation
	Generating Equations

	A First Implementation
	Equations and Solvers
	Least Fixpoints
	Generating Coinductive Elements and Substitution
	Gaussian Elimination

	Automatic Partitioning
	Conclusion

	CoCaml: Functional Programming with Regular Coinductive Types
	Preliminaries
	ML with Coalgebraic Datatypes
	Capsule Semantics

	Equations and Solvers
	Equation Generation
	The iterator Solver
	The constructor Solver
	The gaussian Solver
	The separate Solver
	User-defined Solvers

	Examples
	Finite and Infinite Lists
	A Library for p-adic Numbers
	Equality

	Implementation
	Overview
	Partial Evaluation
	Equality of Regular Coinductive Terms

	Conclusions

	Related Work
	Representation of the state of computation
	Separation logic
	Non-Well-Founded Computation

	Summary and Future Directions
	Derivations of examples
	Capsules
	Closures

	Bibliography

