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Abstract. The behavior of physical systems is typically modeled us-
ing differential equations which are too complex to solve analytically. In
practical problems, these equations are discretized on a computational
domain, and numerical solutions are computed. A numerical scheme is
called convergent, if in the limit of infinitesimal discretization, the bounds
on the discretization error is also infinitesimally small. The approximate
solution converges to the “true solution” in this limit. The Lax equiv-
alence theorem enables a proof of convergence given consistency and
stability of the method.

In this work, we formally prove the Lax equivalence theorem using the
Coq Proof Assistant. We assume a continuous linear differential operator
between complete normed spaces, and define an equivalent mapping in
the discretized space. Given that the numerical method is consistent (i.e.,
the discretization error tends to zero as the discretization step tends to
zero), and the method is stable (i.e., the error is uniformly bounded), we
formally prove that the approximate solution converges to the true so-
lution. We then demonstrate convergence of the difference scheme on an
example problem by proving both its consistency and stability, and then
applying the Lax equivalence theorem. In order to prove consistency,
we use the Taylor—Lagrange theorem by formally showing that the dis-
cretization error is bounded above by the n® power of the discretization
step, where n is the order of the truncated Taylor polynomial.

Keywords: Lax equivalence theorem - Finite difference scheme - Con-
vergence - Taylor-Lagrange Theorem.

1 Introduction

Physical systems are typically modeled by differential equations. For instance,
the aerodynamics of an airplane can be represented by the Navier—Stokes equa-
tions [1], which are too complex to solve analytically.

Since analytical solutions are intractable for most practical problems of in-
terest, numerical solutions are sought in a discretized domain. The process of
discretization in space and time results in approximate solutions to the governing
equations. A numerical scheme is called convergent, if in the limit of infinites-
imal discretization, the bound on the discretization error is also infinitesimally
small. Under these conditions, the numerical solution converges or approaches
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the analytic solution. This idea is formally articulated by the Lax equivalence
theorem [26], which states that if a numerical method is consistent and stable,
then it is convergent.

Proofs of consistency, stability, and convergence are typically performed by
hand, making them prone to possible errors. Formal verification of mathematical
proofs provides a much higher level of confidence of the correctness of manual
proofs. Further, formal verification offers a pathway to leverage mathematical
constructs therein, and to extend these proofs to more complex scenarios.

Recently, much effort has been dedicated to the definition of mathematical
structures such as metric spaces, normed spaces, derivatives, limits etc. in a for-
mal setting using proof assistants such as Coq [31, 8,16, 28]. Using automatic
provers and proof assistants, a number of works have emerged in the formaliza-
tion of numerical analysis [5]. Pasca has formalized the properties of the Newton
method [32]. Mayero et al. [29] presented a formal proof, developed in the Coq
system, of the correctness of an automatic differentiation algorithm. Besides
Coq, numerical analysis of ordinary differential equations has also been done
in Isabelle/ HOL [20]. Immler et al. [19, 21, 22], present a formalization of ordi-
nary differential equations and the verification of rigorous (with guaranted error
bounds) numerical algorithms in the interactive theorem prover Isabelle/HOL.
The formalization comprises flow and Poincaré map of dynamical systems. Imm-
ler [18] implements a functional algorithm that computes enclosures of solutions
of ODEs in the interactive theorem prover Isabelle/HOL. In [9], Brehard et al.
present a library to verify rigorous approximations of univariate functions on
real numbers, with the Coq proof assistant. Brehard [11], worked on rigorous
numerics that aims at providing certified representations for solutions of various
problems, notably in functional analysis. Work has also been done in formaliz-
ing real analysis for polynomials [12]. Boldo and co-workers [5, 6,4] have made
important contributions to formal verification of finite difference schemes. They
proved consistency, stability and convergence of a second-order centered scheme
for the wave equation. However, the Lax equivalence theorem — sometimes re-
ferred to as the fundamental theorem of numerical analysis — which is central to
finite difference schemes, has not been formally proven in the general case.

In this paper, we present a formal proof of the Lax equivalence theorem for a
general family of finite difference schemes. We use the definitions of consistency
and stability and prove convergence. To prove the consistency of a second-order
centered scheme for the wave equation, Boldo et al. [6] made assumptions on the
regularity of the exact solution. This regularity is expressed as the existence of
Taylor approximations of the exact solution up to some appropriate order. Our
formalization instead takes the Taylor-Lagrange theorem of [28], to prove the
consistency of a finite difference scheme of any order. It should be noted that the
order of accuracy of an explicit finite difference scheme depends on the number
of points in the discretized domain (called stencils) appearing in the numerical
derivative. Our approach is to carry the Taylor series expansion for each of those
stencils using the Taylor-Lagrange theorem, and appropriately instantiate the
order of the truncated polynomial, to achieve the desired order of accuracy. By
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incorporating the discretization error into the Lagrange remainder and proving
an upper bound for the Lagrange remainder, we propose a rigorous method of
proving consistency of a finite difference scheme.

Since the Lax equivalence theorem is an essential tool in the analysis of
numerical schemes using finite differences, its formalization in the general case
opens the door to the formalization and certification of finite difference-based
numerical software. The present work will enable the formalization of conver-
gence properties for a large class of finite difference numerical schemes, thereby
providing formal proofs of convergence properties usually proved by hand, mak-
ing explicit the underlying assumptions, and increasing the level of confidence
in these proofs.

Overall this paper makes the following contributions:

— We provide a formalization in the Coq proof assistant of a general form of
the Lax equivalence theorem.

— We prove consistency and stability of a second order accurate finite difference
scheme for the example differential equation 32715 =1.

— We formally apply the Lax equivalence theorem on this finite difference
scheme for the example differential equation, thereby formally proving con-
vergence for this scheme.

— We also provide a generalized framework for a symmetric tri-diagonal (sparse)
matrix in Coq. We define its eigen system and provide an explicit formulation
of its inverse in Coq. We show that since the symmteric tri-diagonal matrix
is normal, one can perform the stability analysis by just uniformly bounding
the eigen values of the inverse. This is important because discretizations of
mathematical model of physical systems are usually sparse [23].

This paper is structured as follows. In Section 2, we review the definitions
of consistency, stability and convergence, state the Lax equivalence theorem [26,
33], and discuss its formalization in the Coq proof assistant. In Section 3, we
discuss the consistency of a finite difference scheme. In particular, we consider the
central difference approximation of the second derivative and formally prove the
order of accuracy using the Taylor-Lagrange theorem in the Coq proof assistant.
We also relate the pointwise consistency of the finite difference scheme with the
Lax equivalence theorem, by instantiating it with an example. In Section 4, we
discuss the generalized formalization of a symmetric tri-diagonal matrix and later
instantiate it with the scheme to prove stability of the scheme. In Section 5, we
apply the Lax equivalence theorem to the concrete finite difference scheme that
we are considering. In Section 6, we conclude by summarizing key takeaways
from the paper, and discussing future work.

2 Lax equivalence theorem

In this section, we review the definitions of consistency, stability and convergence,
discuss the problem set up and state the Lax equivalence theorem [26]. In this
paper and for the formalization, we choose to follow the presentation of Sanz-
Serna and Palencia [33]. We also discuss the proof of the Lax equivalence theorem
which is then formalized in the Coq proof assistant.
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2.1 Consistency, Stability and Convergence

Definition 1 (The Continuous Problem [33]). Let X (the space of solu-
tions) and Y (the space of data) be normed spaces, both real or both complex.
We consider a linear operator A with domain D C X and range R C Y. The
problem to be solved is of the form

Au=f, fey (1)

Here A is not assumed to be bounded, so that unbounded differential operators
are included. The problem (1) is assumed to be well-posed, i.e., there exists a
bounded, linear operator, E € B(Y,X), such that EA = I in D, and that for
f €Y, equation (1) has a unique solution, v = Ef. Furthermore, the solution u
depends continuously on the data.

Definition 2 (The Approximate Problem [33]). Let H be a set of positive
numbers such that 0 is the unique limit point of H. For each h € H | let X, Y},
be normed spaces and consider the approrimate or discretized problem

Apun = fn, fn €Yn (2)
where Ay, is a linear operator Ap : X — Y.

We assume that for each h € H, problem (2) is well-posed and there exists
a solution operator, F, = A,:l, i.e. up = Epfn. The true solution u and the
approximate solution u; can be related with each other by defining a bounded,
linear operator, vy, : X — X, for each h € H. Similarly, data f € Y can be
related to data in a discrete space, f, € Y} by defining a restriction operator sy,.
For each h € H, s, : Y — Y}, is also a bounded, linear operator. We assume that
the operator norms can be uniformly bounded:

llrul] < Ch, [[sn]| < Cs, (3)

where the constants C7,C5 are independent of h. The true solution u = Ef is
compared with the discrete solution u;, = Ej sy, f corresponding to the discretized
datum f. The family (Xp,Yn, Ap, 7, sn) defines a method for the solution of
(1) [33].

Definition 3 (Convergence [33]). Let f be a given element in'Y . The method
(Xn, Yy, An,h, Sp) is convergent for the problem (1) if

lim ||rhnEf — Ensnf||x, =0 (4)
h—0

We say that the method is convergent if it is convergent for each problem (1) for
any finY.

Intuitively, this means that in the limit of the discretization step, h, tending
to zero, the numerical solution Ej sy, f approaches the analytical solution rp Ef.
The analytical solution r, Ff is the restriction of the true (analytical) solution,
u = Ef, onto the grid of size N = 1/h, and Eps,f is the discrete solution,
up, = Ep, fr, computed on the grid of size N.
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Definition 4 (Consistency [33]). Let u be a given element in D. The method
is consistent at u if
lim ||Aprpu — spAully;, =0 (5)
h—0

A method is consistent if it is consistent at each u in a set D, such that the
image A(D,) is dense in'Y.

Intuitively, this means that in the limit of the discretization step, h, tending to
zero, the finite difference scheme Apuy, = fj, approaches the differential equation
Au = f, i.e., we are discretizing the right differential equation.

Definition 5 (Stability [33]). The method is stable if there exists a constant
K such that
EnllBva,xp) < K (6)

Intuitively, stability of the numerical scheme means that a small numerical
perturbation does not allow the solution to blow up. Uniform boundedness of the
inverse Ey = A,:l is a check on the conditioning of matrices (sensitivity to small
perturbations), i.e., it ensures that the matrix Aj, is not ill-conditioned. Thus, if
the numerical problem (2) were unstable, even though we were trying to solve
the right differential equation, we would never converge to the true solution.
Hence, both stability and consistency are sufficient for proving convergence of
the numerical scheme.

The quantities within the norms (4) and (5) are, respectively, the global and
local discretization errors.

Theorem 1 (Lax equivalence theorem [33]). Let (X,Y, A, X}, Yy, Ap,7h, Sk)
be as above. If the method is consistent and stable, then it is convergent.

Proof. We start with the definition of convergence in (4),

lim [[ra Ef — Ensnf|lx,

h—0

= lim ||rpu — Epsn fl|x, (u 4 Ef)
h—0

= lim ||rpu — ErspAullx, (f 2 Au)
h—0

= lim |[Irpu — EnspAul|x, (rau = Irpu)
h—0

= lim HEhAhrhu — EhShAU”Xh (EhAh é I)
h—0

< I [ Bnl 5oy, x| (Anrnu — snAu)ly,

< K'}lbin%J [|(Anrru — spAu)|ly;,,  (From stability: (6))

—
=0 (From Consistency: (5))

2.2 Formalization in the Coq Proof Assistant

In this Section we show how we formalized the proof of the Lax equivalence
theorem [33] in the Coq proof assistant. All of the Coq formal proofs mentioned
in this paper, containing the proofs of consistency, stability and convergence of
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finite difference schemes, and of the Lax equivalence theorem, are available at
http://www-personal .umich.edu/~jeannin/papers/NFM21.zip.

The Coquelicot library [8,7] defines mathematical structures required for
implementing the proof. We define the Banach spaces (complete normed spaces,
complete in the metric defined by the norm [25]) (X,Y, X}, Ys) using a canonical
structure, CompleteNormedModule, in Coq [16]. The definitions of the true prob-
lem (1) and the approximate problem (2) require that the mappings A: X — Y
and A, : X, — Y be linear, and the solution operators E : ¥ — X and
Ey Y, — X be linear and bounded. The linear mappings A, and Ej are
defined as functions of h € R. Boldo et al. [3] have defined linear mapping in
the context of a ModuleSpace and bounded linear mapping in the context of a
NormedModule in their formalization of the Lax Milgram Theorem in Coq [2,15].
We extended these definitions in the context of CompleteNormedModule.

The definition of consistency (5) and convergence (4) hold in the limit of h
tending to zero. Thus, an important step in the proof is to express these limits
in Coq. Formally, the notion of f tending to [ at the limit point x requires, for
any € > 0, to find a neighborhood V of = such that any point u of V satisfies
|f(u) — 1] < e [8]. This notion has been formalized in Coquelicot [7] using
the concept of filters. In topology, a filter is a set of sets, which is nonempty,
upward closed, and closed under intersection [13]. It is commonly used to express
the notion of convergence in topology. We have used a filter, locally x [27] to
denote an open neighborhood of x, and predicate filterlim [27] to formalize
the notion of convergence (in the context of limits) of f towards [ at limit point
x, i.e. lim,_,, f(x) = [. Therefore, the definition of consistency (5) is expressed
as:

(is_lim (fun h:R => norm (minus (Ah h (zth h u)) (sh h (A u)))) 00

where the limits of functions is expressed using is_lim [8].

We next discuss the formalization of the statement of convergence of a finite
difference scheme in Coq. We note that from Theorem 1, consistency and stability
imply convergence. This notion is expressed in Coq as follows:

(is_1lim (fun h:R => norm (minus (Ah h (zth h u)) (shh (A uw))) 00
(*¥Consistency*) /\

(exists K:R , forall (h:R), operator_norm(Eh h)<=K ) (* Stability*) ->

is_lim(fun h:R=>norm (minus (rh h (E(f))) (Eh h (sh h (£))))) 0 0)
(*Convergencex) .

[f()lr

Talls and has

where the operator norm is defined as [|f|l¢ = SUPuL£0yAs(u)
been formally defined in [3].

The basic idea is that we bound the global discretization error (||rpnEf —
Eyspf|]) above using the stability criterion, i.e. ||rpEf — Epsp f|| < K||Aprpu—
spAul|, and then prove that as the local discretization error (||Aprpu — spAul|)
tends to zero in the limit of h tending to zero, the upper bound on the global dis-
cretization error tends to zero (using the property of limits). Using the property
of norm , i.e. 0 < ||rpEf — Epsp f||, we arrive at the inequality

0< HT}LEf — Ehsth < K||Ahrhu — shAu||
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In Coq, we define the lower bound of the inequality as a constant function with
value 0 as: fun _ => 0. Since the limit of a constant function is the constant itself,
ie. limy00 = 0, and limp_ol||Anrnu — spAul| = 0 (Consistency), using the
sandwich theorem for limits, limp, . ||r, Ef — Ep sk f|| = 0. The sandwich theorem
states that if we have functions obeying the inequality: f(z) < g(z) < h(z) and
lim, , f(z) =L A lim,_,, h(z) = L on some open neighborhood of z = a ,
then lim,_,, g(x) = L. This proves the convergence of Definition 4 and completes
the proof of the Lax equivalence theorem.

3 Proof of consistency of a sample finite difference
scheme

A finite difference scheme (FD) approximates a differential equation with a dif-
ference equation. The derivatives are expressed in terms of function values at
finite number of points in the dicretized domain. For instance, consider a simple
differential equation, % =1 on a domain z € (0, L) with boundary conditions

u(0) = 0 and «w(L) = 0, where L is the length of the domain. A second order
u(m+Am)722(Jg)+u(zfo) =1,

accurate finite difference approximation would be >
where Az is the discretization step and x is the point at which the difference
equation is evaluated. We will refer to this as numerical scheme N},. Since we are
computing a numerical approximation to the actual derivatives, we are interested
in knowing the order of the discretization error.

Definition 6 (Discretization error). Let D(u) denote the true derivative of a
function v : R — R and N(u) denote the finite difference approzimation of the true
derivative. The discretization error (commonly referred to as the truncation error) (T)
is then defined as:

72 D(u) — N(u) (7)

If the function u is analytic, it can be expressed as a Taylor series expansion at
the point of evaluation. The truncation error is then evaluated by expressing the
numerical derivatives in terms of a truncated Taylor polynomial and then taking
a difference of the true derivative and the numerical derivative. This gives us an
upper bound on the discretization error. If a numerical method is consistent, the
truncation error can be expressed as:

T =0O(Az")

when Az tends to zero, and where n is the order of the truncated Taylor polyno-
mial. We use this idea to formalize the proof of consistency of a finite difference
scheme. This requires the use of an important theorem from calculus, the Taylor—
Lagrange theorem.

Theorem 2 (Taylor-Lagrange theorem). Suppose that f is n + 1 times dif-
ferentiable on some interval containing the center of convergence ¢ and x, and let

P.(z) = f(e)+ %(1’ —c)+ #(m— ) +.+ ﬂ%),(p)(ﬂc —c)™ be the n'™ order Taylor
polynomial of f at © = c. Then f(x) = Pn(z) + En(x) where En(z) is the error term
of Po(x) from f(zx). i.e. En = f(z) — Py(x), and for & between ¢ and x, the Lagrange

n+1
remainder form of the error E, is given by the formula E,(z) = f(n+1()£!) (# —c)" D),
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Martin-Dorel et al. [28] proved the Taylor-Lagrange theorem formally in Coq,
and it is available in the Coq.Interval library [30,10]. We used this formaliza-
tion of the Taylor-Lagrange theorem to prove the consistency of a finite difference
scheme.

We will specifically prove that for a central difference approximation of the

2 Az)—2 A .
, ZTZL, expressed as : ule+Az) (ZS;);U(I z), the truncation

error 7 is quadratic in Ax:

second derivative

| dPu w4 Az) — 2u(x) 4 u(z — Az)| 9
| ) — 0(4s?)

T

3.1 Proof of consistency for the finite difference scheme

We want to prove that for a central difference approximation of the second
derivative in the numerical scheme N}, the truncation error, 7 = O(Ax?). By
invoking the definition of Big-O notation, the theorem statement can be stated
as:

d*u u(z + Az) — 2u(z) + u(z — Az)

3 r — —
vy >0,1">0, e (Az)?

< I'(Az?), 0 < |Az| < .

(8)
The equation (8) is stated formally in Coq as:

Theorem taylor_FD (x:R): Oab x ->exists gamma:R, gamma >0 /\ exists G:R,
G>0/\ forall dx:R, dx>0 -> Oab (x+dx) -> Oab (x-dx)->(dx< gamma ->
Rabs((D 0 (x+dx)- 2%(D 0 x) + D 0 (x-dx))*/(dx * dx)- D 2 x)<= G*(dx"2)).

where Dab x mean a < z < band D k x denotes k" derivative of v with respect
to x.
We start by introducing the following lemmas required to complete the proof.

Lemma 1 (|F(z)| ~ O(Az)*). Vz € (a,0),3n €R,p>0AT M ER, M > 0A
YAz € R, Az > 0 — (z + Az) € (a,b) — Az < n — |F(x)] < M(Azx)*.

Here, F(z) is the Lagrange remainder in the expansion of u(x + Az) up to degree 3
and is defined as:
1 2 d2’LL 1 3 d‘q’iu

F@) 2 ufe + Ar) —ufe) - Ao'| - gan? G|~ a0 GE] O

Thus, Lemma 1 states that the Lagrange remainder F'(z) = %(Am)‘l% is of order
(Az)* for all € € (x,z + Ax).

Lemma 2 (|G(z)| ~ O(Az)*). Vz € (a,0),36 €R,§ >0ANT K €R, K >0A
VAz € R, Az > 0 — (z — Az) € (a,b) = Az < § — |G(2)| < K(Ax)*.

Here, G(x) is the Lagrange remainder in the expansion of u(z — Az) up to degree
3 and is defined as:
du 1 2 d27u

A
G(z) = u(z — Az) — u(z) + Aw% L Q(Am) dz2

3
+ l(AI):%d—u

x
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Thus, Lemma 2 states that the Lagrange remainder G(z) = %(Ax)‘l% is of
order (Az)* for all € € (z — Az, x).

Both the lemmas are a straightforward application of the Taylor—Lagrange
theorem (Theorem 2), and are crucial to the formalization of the proof of the
consistency of the finite difference scheme.

Next, we present an informal proof of the theorem followed by a discussion
on the formal proof of the consistency theorem.

Proof.
|F(z)| < M(Az)*  [From Lemma 1] (11)

|G(z)| < K(Az)*  [From Lemma 2| (12)
Adding equation (11) and (12), we get:

|F(2)] +|G(x)] < (M + K)(Az)*
= |F(z) + G(z)| < (M + K)(Az)*
[Using the triangle inequality, (|F(z) + G(z)| < |F(z)| + |G(z)]) ]
= |F(z) + G(z)| < I'(Az)* (Instantiatingl” := M + K) (13)

Unfolding the definitions F'(z) and G(z), and doing the algebra we get:

gdu

‘ (x + Az) — 2u(z) + u(z — Az) — (Az) ‘<FA )

‘ u(x + Azx) — 2u(z) + u(x — Ax)

L - 7‘ < I'(A2%) [QED] (14)

An important point to note is that the condition |F(z)| + |G(z)| < M(Axz)*
K(Az)* holds when 0 < |Az| < v, where 7 is as defined in (8). We therefore
choose, v = min(n,d), where 7 is such that, |F(z)] < M(Ax)* holds when
0 < |Az| < n, and 4§ is such that, |G(x)| < K(Az)?* holds when 0 < |Az| < J.

3.2 Formalization in the Coq Proof assistant

We followed the proof above and formalized it in the Coq proof assistant. To
apply the Taylor-Lagrange theorem [28] to the consistency analysis of a central
difference approximation, we broke down the theorem statement into two lemmas
as discussed in the previous section. Therefore, in this section, we will discuss
the proof of Lemma 1 and 2.

Proof of Lemma 1: Formally Lemma 1 is stated in Coq as:

Lemma taylor_uupper (x:R): Oab x-> exists eta: R, eta>0 /\
exists M :R, M>0 /\ forall dx:R, dx>0 -> Oab (x+dx) ->
(dx<eta -> Rabs(D 0 (x+dx)- Tsum 3 x (x+dx))<=M*x(dx"4)).

In the proof of the Lemma, existential quantification associated with n and M
has to be addressed. We chose 1 as b — z, since the interval in which we are
studying Taylor—Lagrange for u(x + Ax) is [z, b]. Since Az € (z,b) and Az < 7,
it seems logical to chose 7 = b — x. For the choice of M, we obtained extreme
bounds in the interval. Since the function u and its derivatives are continuous in
a compact set [z,b], we are guaranteed to get maximum and minimum values.
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In Coq, we applied the lemma continuity_ab_max to obtain a maximum value,
4 4 4 4 . .
(d “)Wn — 2ulF) gich that %(f) < d;T(f),vg € [z,b]. Similarly, we apply

dxt dxt

S . . .. 4 d*
the lemma continuity_abmin to obtain a minimum value, (d—“> = ;;(f )
man

dxt

such that % < %Nﬁ € [z, b].

d
Thus, M is chosen as M = max ( d'u(G)

4
can bound the Lagrange remainder or the trunction error from above and thus
prove Lemma 1.

)

% D With this choice of M, we

x4
Proof of Lemma 2: Formally Lemma 2 is stated in Coq as:

Lemma taylor_ulower (x:R): Oab x -> exists delta: R, delta>0 /\
exists K :R, K>0 /\ forall dx:R, dx>0 ->0ab (x-dx) ->
(dx<delta -> Rabs(D 0 (x-dx)-Tsum 3 x (x-dx))<=Kx(dx"4)).

The proof of Lemma 2 follows the same approach as that of Lemma 1. Here, we
chose § as = — a, since the interval in which we are studying Taylor-Lagrange
theorem for u(z— Ax), Az € (a,z), and Az < §. We chose K in the same way as
we chose M in Lemma 1 except that the interval in which we obtain maximum

.. 4, . . . 4 d*u(G
and minimum values for 372‘ is [a,z] in this case. Thus, (ngf) = %,

min
4 d*u(F
(ZTZ) = ;;(4 ),and K = max (
max

4 4
%&G) d;T(f)),Vce [a, z].

)

To prove the main theorem statement on consistency, we break the statement
into Lemma 1 and 2, by instantiating I" = M + K, and v = min(n, d), where
(M,n) and (K, d) have been defined as in Lemma 1 and 2 respectively, in the
manner shown in section (3.1). To implement this instantiation, we have to
carefully destruct the lemmas introduced in the theorem statement. Then, we
simply apply lemma 1 and 2, to complete the main proof.

3.3 Relating pointwise consistency to the Lax equivalence theorem

In this section, we relate the proof of consistency from Section 3.1 with the Lax
equivalence Theorem 1. The numerical discretization of the differential equation
can be expressed in the discrete domain as:

10 0 0 ...0 Uo 0
1-21 0 ...0 Ul 1
1 . :
h? 0 1 2 10 : N 1)
— UN—-2 1
0 0 1 —21| |un-1 1
0 0 0 01 uN 0
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Comparing with the statement of consistency (5), we have

100 0 ...07[ u 0 ug
1-21 0 ...0 U1 1 uo—Zuitus _
.o . uﬁh#_l
lim |55 |20 T = = lim . -0
Ao0lth® o 1 —2 1 0 un-o 1 h=0 :
0...0 1 —21] |un—1 1 W}f#—l
0...0 0 0 1] | un 0 ny
(16)
Taking the vector norm in the L; sense, ||.||1, equation (16) can be written as:
. Up U — 2U1 + U2 UN_2 — 2UN_1 +UN UN .
}lli%{m'f‘m—l'—i-..—i- h2 _1"“?}—0
(17)

limp 0 35 = 0 and limy, o 75~ = 0, trivially because of the boundary conditions
we imposed, i.e. u, = 0 and uy = 0. The norm used in (16) are in the space Y},

ie, ||.|ly,-
This reduces to proving:

N-1
lim
h—0
i=1

Ui—1 — 2U; + Uit
Biz1 = Ui ¥ Uita = + _1‘:0 (18)

But from the Taylor-Lagrange analysis discussed in section (3.1), we have

2
Ui—1 — 2U; + Uit d“u

2
3 Tzl |=son (19)

T

where C is a constant, and u; = u(x;),ui—1 = u(z; — h),uix1 = u(z; + h).

Substituting ‘;2712‘

= 1, and using the inequality (19) and equation(18), we get

Tq

N-1 N-1 u Qs +u N-1
. i—1 — 2U; i+l . 2
Tl oA el ) <
2052 i 2 E 2, fim IO 30)
But, Zil\:lllimhﬂo |Ch?| = 0. Hence, using the sandwich theorem, we prove
that N
— . |wim1 — 2us + Ui 1l
2 2 =0 (aeD

3.4 Formalization in Coq

In order to represent, x;, ¢ = 0..IN, we define x of type: nat — R. The boundary
conditions are imposed as hypothesis statements:

Hypothesis u_0 : (D 0 (x 0))= 0.
Hypothesis u_N: (D 0 (x N)) =0.

The differential equation is defined as:

Hypothesis u_2x: forall i:mat, (D 2 (x 1)) =1.
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Equation (18) is formalized as a lemma statement:

Lemma lim_sum:is_lim (fun h:R =>
sum_n_m (fun i:nat =>Rabs (( D O (x i -h) -2% (D 0 (x i))
+D 0 (xi+h))*/(h"2) -1)) 1%nat (pred N)) 0 O.

This is where we integrate the proof of pointwise consistency of the FD scheme
from section (3).

The main theorem statement which is an application of the statement of
consistency required in the proof of Lax equivalence theorem from section (2) is
as follows:

Theorem consistency_inst: forall (U:X) (f£:Y) (h:R) (uh: Xh h)

(rh: forall (h:R), X -> (Xh h)) (sh: forall (h:R), Y->(Yh h))

(E: Y->X) (Eh:forall (h:R),(Yh h)->(Xh h)),

is_lim (fun h:R => norm (minus (Ah h (xh h U)) (sh h (A U)))) 0 0.

We note here that the above-mentioned formalization is not unique to the second
order scheme that we discussed. The approach we discuss can easily be gener-
alized to verify consistency of any finite difference scheme. The crucial step in
such a generalization is the appropriate instantiation of the A, matrix and the
vectors rpu and s, Au.

4 Stability of the scheme

In this section we discuss the stability of the scheme N},. From section 2, stability
of a numerical scheme requires the solution operator E; = A;l to be uniformly
bounded. We prove this by bounding the eigenvalues of Ej; uniformly. Eigenval-
ues of Ey, are just inverse of the eigenvalues of Aj. A formal proof of this can be
referred to in the Appendix B.2.

We will first discuss a generalized framework for the formalization of sta-
bility for a symmetric tri-diagonal matrix in Coq. We denote this matrix with
Ap(a,b,c) with ¢ = a for symmetry. This notation means that b is on the diag-
onal, ¢ is on the upper diagonal and a is on the lower diagonal. All the other
entries are zero. Since we are treating stability from a spectral viewpoint, we
next discuss the formalization of the Eigen system for Ay (a,b,a).

4.1 Lemma to verify that the eigenvalues and eigenvectors belong
to the spectrum of Ap(a,b,a)

Analytical expressions for the eigenvalues and eigenvectors of Ay (a, b, ¢) are given
by:

mr a1i—1/2 2 mm
Am = b+ 2\/accos {N-&-l} sm = (), [C] N1 {JN—kJ

Vm,j = 1..N. In Coq, we defined \,, and s,, as follows:

Definition Eigen_vec (m N:nat) (a b c:R):= mk_matrix N 1%nat (fun i j =>
sqrt ( 2 / INR (N+1))*(Rpower (a */c) (INR i +1 -1%/2))=*
sin(((INR i +1)*INR(m+1)*PI)*/INR (N+1))).

Definition Lambda (m N:nat) (a b c:R):= mk_matrix 1%nat 1%nat (fun i j =>
b + 2% sqrt(a*xc)* cos ( (INR (m+1) * PI)*/INR(N+1))).
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Since naturals in Coq start with 0, we write INR (m+1) and INR i+1.

We then formally verify that the analytical expressions for the pair (A, $;)
indeed belong to the spectrum of Aj. From now on, we will refer to Ay (a,b,a)
as Ay, for the sake of brevity. In Coq, we state this formally as:

Lemma eigen_belongs (a b c:R): forall (m N:nat), (2 < N))nat ->
(0 <=m < N)%nat -> a=c /\ 0<c-> (LHSm N abc) = (RHSm N a b c).

where, LHS = Aps,, and RHS 2 SmAm. Here we used the definition of

eigenvalue-eigenvector, i.e., Ay s, El AmSm. Formalizing the proof of the lemma
eigen belongs was challenging due to the structure of the matrix Ay. Ay is
a tri-diagonal matrix with non-zero entries on the diagonal, sub-diagonal and
super-diagonal. The other entries are zero and hence the matrix is sparse.

N-1 N-1
Z An(i, ) sm (i) + Z An(i,5)sm(i) = Amsm(i); 0<i<N—1 (21

An(i,§) #0 An(i,§) =0

In Coq, we have to carefully destruct the matrix Ay to separate the non-zero and
zero sums in the LHS of equation (21). The idea is to do a case analysis on the
row-index i, and has been illustrated in figure (1) in the Appendix B.4. Details on
the formal proof of the zero and non-zero cases are presented in Appendix B.4.
Next, we discuss formalization of the boundedness of the matrix norm of
Ej, = A; . We have used an explicit formulation of A, ! [17] in our formalization
and we verify this formally using the definition: A;lAh =1 A AhA,:1 =1.
Details on the proof can be referred to in the Appendix B.1.
4.2 Lemma on the boundedness of the matrix norm for scheme N},

Here, we have used the definition of the spectral (2-norm): ||A||2 = p(A), where
p(A) is the spectral radius of A and is defined as the maximum eigen-value of A,
ie. p(A) = mazx;, | \m(A)|. For the symmetric tri-diagonal matrix Ap, A = Ej,
and A (Ep) = 1/An(Ar). Since A (Ap) < 0, maZm, | Am (ER)| = 1/|Amin(An)].
Hence, we define the matrix norm in Coq as follows:

Definition matrix_norm (N:nat):= 1/ Rabs (Lambda_min N).

To show that the matrix norm is uniformly bounded, we need to show that
1/|Amin(Ap)| is uniformly bounded. This is where we instantiate the tri-diagonal
matrix A with the scheme N},. Thus, we prove the following lemma in Coq:

Lemma spectral: forall(N:nat),(2<N)%nat -> 1/Rabs(Lambda_min N) <= L"2/4.

where L is the length of the domain, independent of h, and is constant through-
out. Lambda_ min is the minimum eigenvalue for the instantiated matrix, A} =
Ah(%, ;—2‘2, h—g) We provide a paper proof of this bound in the Appendix A.

To show that all the eigenvalues have the same bound, we prove that m

is the maximum eigenvalue of E} . The lemma statement is as follows:

Lemma eigen_relation: forall (i N:nat), (2<N)%nat ->(0<=i<N)%nat ->
Rabs (lam i N) <= 1/ Rabs( Lambda_min N).
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This completes the proof on the boundedness of the eigenvalues of Ej. The
lemma, eigen relation also shows that the spectral radius of Ej is ‘/\%1(14,)',
min h

and justifies the defintion of matrix norm.

We note that the definition of the matrix norm of A;l is valid only if A,:l is
a normal matrix . We therefore verify that A,:l is normal. The lemma statement
is provided in the Appendix B.3.

We also provide the proof that Aj, is diagonalizable in the Appendix C. This
helps us to formally establish that the eigen vectors are orthogonal and hence
the eigen space is complete.

4.3 Main stability theorem

In this section, we integrate all of the previous lemmas to prove the main stability
theorem (6).

Theorem stability: forall (u:X) (£:Y) (h:R) (uh: Xh h)
(rh: forall (h:R), X -> (Xh h))(sh: forall (h:R), Y->(Yh h))
(E: Y->X) (Eh:forall (h:R), (Yh h)->(Xh h)),
exists K:R , forall (h:R), operator_norm(Eh h)<=K.

where the operator norm is instantiated with the matrix norm using the following
hypothesis:

Hypothesis mat_op_norm: forall (u:X) (f£:Y) (h:R) (uh: Xh h)
(rh: forall (h:R), X -> (Xh h))(sh: forall (h:R), Y->(Yh h))
(E: Y->X) (Eh:forall (h:R),(Yh h)->(Xh h)),
operator_norm (Eh h) = matrix_norm m.

5 Application of the Lax equivalence theorem to the
example problem

In this section, we apply the Lax equivalence theorem that we proved in Section 2

. . . 2 . .
to a concrete differential equation ZTZ = 1 and the numerical scheme N}, given

by 1%1—2# = 1. We recall that the proof of convergence using the Lax
equivalence theorem requires that the difference scheme is consistent with respect
to the differential equation and is stable. We discussed the proof of consistency
of the scheme in Section 3 and the stability in Section 4. Thus, we apply these
proofs to complete the proof of convergence for the scheme. We provide the

theorem statement to verify convergence of the scheme in the Appendix D.

6 Conclusion and Future work

This work investigated the formalization of convergence, stability and consis-
tency of a finite difference scheme in the Coq proof assistant. Any continuously
differentiable function can be approximated by a Taylor polynomial. The La-
grange remainder of a Taylor series provides an estimate of the truncation error
and we formally proved that this error can be bound by n'” power of the dis-
cretization step, Az, where n — 1 is the order of the Taylor polynomial. We
implemented the proof of the consistency of a finite difference scheme by break-
ing down the theorem statement into lemmas, each corresponding to function
values at points neighboring the point of evaluation. These lemmas were proved
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individually by applying the Taylor-Lagrange theorem, the proof of which is
already formalized in the Coq.Interval library [28]. Consistency and stability
guarantees convergence as stated by the Lax equivalence theorem. Following the
proof of the the Lax equivalence theorem, we formally proved convergence of a
specific finite difference scheme. Specifically, we proved that the global discretiza-
tion error could be bounded above by a constant times the local discretization
error. Then, by applying the sandwich theorem for limits, we proved that the
convergence condition is satisfied in the limit Az — 0. In the process of formal-
izing the proof of stability for the numerical scheme, we also developed tools for
linear algebra and spectral theory, for the Coquelicot definition of matrices in
Coq, which can be reused. As noted earlier, the approach we follow is not specific
to the sample numerical scheme, but can be easily extended to other numerical
schemes with appropriate instantiation of the matrix Ay, and vectors, rpu, spAu.
Formalization of the proof of orthogonality of the eigenvectors helped us report

the missing constant 4/ Niﬂ in s, that occurs in most textbooks/literature on
numerical analysis.

This work considered the impact of the discretization error on the conver-
gence of a numerical method to the exact solution. In a practical setting, floating
point errors have to be also accounted for, as an accumulation of such errors can
lead to deviations from the true solution. In future work, we will extend our
results to incorporate floating point errors and their impact on the convergence
of finite difference numerical schemes. We also plan on working with iterative
solvers, which would be an extension of our current work on direct solvers (ex-
plicit inversion of the matrix Ay). We also plan on working with the Frama-C
toolkit [14] for verification of existing programs and be able to discharge the
generated verification conditions using the Coq proofs we present in this paper.

6.1 Effort and challenges:

The total length of the Coq code and proofs is about 14,000 lines, of which about
1200 lines are specific to the scheme. The rest of the formalization can be reused
for a generic symmetric tridiagonal matrix. It took us about 15 months for the
entire formalization. Much of the effort was spent on destructing the matrices
and developing required linear algebra tools to handle the matrix manipulation.
Since we are treating stability from a spectral point of view, lack of spectral
theory for numerical analysis for the Coquelicot definition of matrices has been
challenging for us. For the proof of consistency, the primary challenge was the
right placement of the quantifiers to bound the Lagrange remainder using the
definition of big-O notation. To instantiate I' = M + K, we had to carefully
destruct the lemmas into the main theorem. We also encountered issues in se-
lecting appropriate instantiations for other existential parameters. In the proof
of convergence, we had to carefully construct the application of properties of
limit with filters of neighborhoods.
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A Proof of the uniform bound on the eigen values of

An(1/h2, —2/h2,1/h?)

In this section, we provide a paper proof of the uniform boundedness of the
eigenvalues of the scheme Nj.
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Proof.
Amin(A}) = 2 —1+cos | —— [For m=1 in the expression of A\,]
min h) — h2 N+1 - Y m
Since all eigenvalues are negative, min|Ay, (A%)] = [Amin (A%)],
. 1 _ 1 . 1 _ h*
o ; ’ B T ; ! B . T
|)‘mm("4h )‘ ,722 [—1+COS(N+1)” |)"”W(Ah)‘ 4 sin? (m)
[Using the identity: —1 + cos(2x) = —2sin®(z)]
L
Using the definition, h 2 NrD where L is the domain length,
. 1 B L? P w2 L L* 2P
: . - . - 2 . = 2 52
[Amin (A7) 4(N + 1)2 sin? (2(1\;\—4»1)) w2 4(N + 1)2 sin? (2(1\?“)) 72 sin®(x)
where,z = ——
TN+
Using the relation, Vz € (0,7/2] 2z < sin(z), or T < T weget v < 12
& ' ’ B P77 sin(x) T 27 & sin?(z) ~— 4
1 L’
- <% |[QED
P ()] < 1 [QED]
We prove the relation Vo € (0,7/2], smlﬁ < 5, by using the concavity of

sin(z) in [0, 7/2]. We define a concave function f: R — R in Coq as follows:

Definition concave (f:R->R) (x y c:R):=
0<=c<=1 -> f(c*x + (1-c) * y) >= cx £ x + (1-¢c) * f y.

The proof for Sinlf(w) < %2, Vo € (0,7/2] is formalized as the following lemma

statement in Coq:

Lemma spectral_intermed:forall(x:R),0<x<=PI/2 ->(x"2)/(sin x)"2 <=(PI"2)/4.

B Lemmas required to complete the proof of stability:

B.1 Lemma to verify the invertibility of Aj

In this subsection, we verify that the explicit form of the inverse [17] we use
is indeed the inverse of Ay, i.e. AhAgl = A,:lAh = I. In Coq, we state the
following lemma to verify the invertibility of Ap:

Lemma invertible_check (a b:R) : forall (N:nat), (2<N)%nat -> O<a ->
Mk N (b/a) <> 0 -> invertible N (Ah N a b a ) (inverse_A N a b ).

Here, M, is the determinant of Aj, of size k. We used the recurrence relation [17]:
My =DXxXMy_1—My_5, D= 3. Overall, the approach is similar to the proof
of the lemma eigen belongs, i.e. we exploit the tridiagonal structure of Ap. The
proof required us to formalize some properties from combinatorics.

For the scheme that we are considering, D = —2. Two important steps that
were required to complete the proof of My # 0 for the scheme N/, were:
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1. Proving that My = (—1)* x (k + 1): We proved this using strong induction
on k and the recurrence relation described above. To get an intuition of why
it is true, we observe the values of M, for initial values of k: My =1, M; =
—2, MQZ?), M3:—4-~-Mk:(—l)k><(k+].)

2. Proving that the determinant, M # 0

B.2 Lemmas on spectrum of Ej,

In this subsection, we prove that the eigenvalues of E; are just inverse of the
eigenvalues of Ay, while the eigenvectors are the same. This follows from the
following informal proof:

Proof. We start with the definition of Eigen-system (Am, sm),
Ansm = AmSm

Multiplying by A;l on both sides and using the definition :A;lAh =1,

_ _ _ s _
AhlAhsm = Ahl)\msm — Sm = )\mAhlsm E )\—m = Ahlsm
m

In Coq, we define the following lemma to formalize this proof:

Lemma inverse_eigen (m N:nat) (a b:R) : (2< N)%nat -> (0<=m<N)%nat ->

0<a -> ((invertible N (Ah N a b a) (inverse_A N a b)) /\

(LHSm N a b a= RHS m N a b a)) ->(Eigen_.vec m N a b a) =

Mmult (inverse_A N a b) (Mmult (Eigen_vec m N a b a) (Lambda m N a b a)).

B.3 Lemma to verify that the A;l is normal

In this subsection, we verify that A;l is normal. This lemma is stated as:

Lemma inverse_is_normal (a b:R): forall (N:nat),
Mmult (inverse_A N a b ) (mat_transpose N (inverse_A N a b )) =
Mmult (mat_transpose N (inverse_A N a b )) (inverse_ A N a b ).

B.4 Intermediate lemmas to complete the proof of the lemma
eigen_belongs:

This proof requires some intermediate lemmas which verify certain properties
which are as follows:
Lemmas on structure of the matrix:In this subsection, we provide the
lemmas that verify the structure of the matrix, i.e. the diagonal entries are b, the
sub-diagonal entries are a and the super-diagonal entries are c. Mathematically,
the lemmas say: Ay (i,i) = b, Ap(i —1,i) = a, Ap(i,i+1)=c Vi=1---N—2.
For the first and last rows, we have the structure as: A,(0,0) = b, Ap(0,1) =
¢, Ap(N=1,N—=2) = g and A;(N—1,N—1) = b. In Coq, we define the following
lemmas to verify the above-mentioned structure:
Lemma coeff_prop_1 (a b c:R): forall (i N:nat), (2<N)%nat ->

(0<i <N)%nat -> coeff_mat Hierarchy.zero (Ah N a b ¢) i (pred i) = a .

Lemma coeff_prop_2 (a b c:R): forall (i N:nat), (2<N)¥%nat ->
(i <N)%nat ->coeff_mat Hierarchy.zero (Ah N a b c) i i = b.

Lemma coeff_prop_3 (a b c:R): forall (i N:nat), (2<N)%nat ->
(i< pred N)%nat -> coeff_mat Hierarchy.zero (Ah N abc) i (i + 1) = c.
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An(0,k) =0, 2<k<N-1

An(2,0)=0
Formalization in Coq:
Formalization in Coq:
Lemma mat_prop_1(a b c:R):
Lemma mat_prop_4 (a b c:R): forall (N:nat) , (2<N)%nat -> forall (k N:nat) , (2 < M%nat ->(2 <= k <= pred N)%nat ->
coott nat Hierarchy zero (Ab N a b &) 2.0 = 0 Gooff_mat Hierarchy.zero (Ah N a b c) zero k = 0
b c[0_0 0 007l
a b oc (00 00 o] Au(Lk)=0, 3<k<N-1
An(i k) =0, 2<i<N-20<k<i-2 0] a b ¢X0 ... 0 0 0
S . J| | Formalization in Coq:
Formalization in Coq: —r :
A= |0 a b e\ ( Lemma mat_prop_2 (a b c:R):
c:R) forall (k m N:nat), (2<N)%nat -> (3 <= k <= pred N))nat ->
< pred N)%nat -> ( 0 <= k <= pred (pre at-> : R : coeff_mat Hierarchy.zero (AhNabc) 1k =0
t Hierarchy.zero (Ah N a b c) i k =0 0.0 0 g b o\
0. 0 a b ¢
[0 0 0 0 0 0]a b
An(ik) =0, 2<i<N-2i+2<N-1,i+2<k<N-1

An(N—-1,k)=0, 0<k<N-3

Formalization in Coq:

Formalization in Coq:

Lemma mat_prop_5 (a b c:R) :
forall (i k N:nat) , (2<N)%nat ->(0 <= k <= N - 3)%nat ->
coeff_mat Hierarchy.zero (Ah N a b c) (pred N) k = 0.

Fig. 1. Formalizing the tri-diagonal structure of the matrix. This formalization can be
used for any tri-diagional system.

Lemmas to handle the zeros case: A good amount of effort was also required
in extracting zero entries in the matrix A, and proving that their sum equals
zero. This again exploits the structure of the matrix, illustrated in figure (1).
Two important lemmas that played a pivotal role in this proof are :

Lemma sum_const_zero:forall(n m:nat), (n<=m)%nat-> sum_n_m(fun _=>0)n m=0.
Mathematically this means: Vn,m : nat,(n <m),>."0=0
Lemma sum_n_m_zero(a:nat -> G)(n m:nat):(m<n)%nat -> sum_n_m a n m = zero.

Mathematically this means: V(a : nat — G), (n,m : nat), (m < n), Y.»'a =0,
where, a is a function from naturals to an abelian group (G), in our case, it is
reals. The first lemma was proved by us but the second one is already present
in the Coquelicot library.

Lemmas to handle the non-zero case: The other part of the proof is to
equate the sum of non-zero entries in LHS to a non-zero entry in RHS. i.e.
A_'hi - Syn = AmSmi, Where the Ah; represents the i** row of the matrix and s,,;
denotes the it component of the Eigen-vector s,, and \,, is a scalar. In Coq,
considering ¢ = 0, for example, would translate to the lemma statement:

Lemma i_0_j (a b c:R):
forall (m N:nat), (2<N)%nat -> (0<=m<N)%nat -> a=c /\ 0<c->
mult (coeff_mat Hierarchy.zero (Ah N a b ¢ ) zero 0)
(coeff_mat Hierarchy.zero (Eigen_.vec m Na b c ) 0 0) +
mult (coeff_mat Hierarchy.zero (Ah N a b ¢ ) zero 1)
(coeff_mat Hierarchy.zero (Eigen.vecm Nabc ) 1 0) =
mult (coeff_mat Hierarchy.zero (Eigen_vec m N a b ¢ ) zero 0)
(coeff_mat Hierarchy.zero (Lambda m N a b ¢ ) 0 0).
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We are not providing other lemmas here in the interest of space, but they can
be referred in the attached code.

C Diagonalization of A,

In this section, we discuss the lemmas required to prove that Ay, is diagonalizable,
i.e. Ay = SAST where S is the matrix of eigenvectors and A is a diagonal matrix
of Eigen-values of Aj. We first present an informal proof:

Proof. We start with the definition of an Eigensystem:
ApS =54 = 4,887 = SAST — A, =SAST [sST =1]

Here, we use the fact that S~' = ST, since S is orthonormal. We verify this
by using the definition of inverse of matrices, i.e. SST = STS = I. In Coq, we
prove the following lemma:

Lemma Scond:forall (N:nat) (a b:R), (2<N)%nat -> 0O<a ->
Mmult (Sm N a b) (Stranspose N a b) = identity N /\
Mmult (Stranspose N a b) (Sm N a b) = identity N.

To prove the lemma Scond, we split the proof into two sub-proofs:

1. i=j,
2. i#j

For the first case, we have the condition that §; - 5; = 1, i.e. ||5;||? = 1. This
reduces to proving that the sum of the following sine-squared series is 1.

o 2 mm
.2 . _
E Nt {]N—&—l}_l (22)

m=1
In Coq, we prove the following lemma to verify (22):
Lemma sin_sqr_sum: forall (i N:mat), (2<N)%mnat /\ (0<=i<N)%nat ->
sum_n_m (fun l:nat => (2/(INR(N+1)))x*
sin(((INR 1+1)* INR (i+1)*PI)*/ INR (N+1)) ~2) O (pred N)=1.

Here, we make use of the following theorem from [24]:

Theorem 3. Ifab e R and d # 0 and n is a positive integer,
EZ;S cos(a + kd) = S;?HZ%Q cos (a + 7(”_21)‘1)

where sin? (6) = (1 — cos (26))/2. We state the Theorem 3, using the following
hypothesis statement in Coq:

Hypothesis cos_series_sum: forall (a d:R) (N:nat), d <>0->
sum_n_m (fun l:nat => cos (a+(INR 1)*d)) O (pred N)=
sin(INR N*d/2)* cos(a+INR(N-1)*d/2)*/ sin(d/2).
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We then use the hypothesis cos_series_sum to prove the lemma sin_sqr_sum.
For the second case, we have the orthogonality condition &; - §; = 0, ¢ # j. This
reduces to proving:

1:2_:: sin {(k + 1)(3\;:_1);} sin [(k + 1)(‘7]\;:_1);] =0 (23)

since, N 7 Is a constant, it can be taken outside the summation.
Using the trigonometric identity,

1
sin Asin B = 3 [cos (A — B) — cos (A + B)]

we can reduce (23) into sums of cosines as follows:

1= 1A= i+ 2)m
ikz—o [k+1 Nj)1]2];)cos{(k+l)(]\;+1)]0 (24)

Using Theorem (3), we can further reduce each sum in equation (24) into the
product of sine and cosine. By doing some algebra, we prove that if (i — j) and
(i + j + 2) are simultaneously even or they are simultaneously odd, the sums in
equation (24) cancel out. We further note that it is always the case that (i — j)
and (i + j + 2) are simultaneously even or they are simultaneously odd. We
provide an informal proof of this fact as follows:

Proof. Case 1: (i — j) is even:

dm : nat, (i — j) =2m

= i=2m+j

= 1+j+2=2m+j+5+2

= i+j+2=2x(m+j+1) .. Even

Case 2: (i — j) is odd:

Im :nat, (i—j)=2m+1

= i=j5+2m+1

— it j+2=j42m+14j+2

= i+j+2=2x(G+m+1)+1 .. Odd

and vice-versa for each cases. This completes the proof of orthogonality of the
Eigen vectors. In Coq, we prove the following lemma to verify (24):

Lemma cos_sqr_sum: forall (i j N:nat),
(2<N) Ynat /\ (0<=i<N)%nat /\ (0<=j<N)%nat /\ (i<>j) ->
sum_n_m (fun 1l:nat => mult(/INR(N+1))
(cos((INR(i) - INR(j)) * PI / INR (N + 1) +
INR 1 * (INR(i) - INR(j)) * PI / INR (N + 1)) -
cos (INR(i+j+2)*PI */ INR(N+1) +
INR 1 * INR(i+j+2)*PI */ INR(N+1)))) O (pred N)=0.
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D Application of the Lax—Equivalence theorem to the
scheme N},

We define the following theorem statement to prove the convergence of the nu-
merical scheme in Coq:

Theorem scheme_convergence: forall (U:X) (£:Y) (h:R) (uh: Xh h)
(rh: forall (h:R), X -> (Xh h)) (sh: forall (h:R), Y->(Yh h)) (E: Y->X)
(Eh:forall (h:R), (Yh h)->(Xh h)),
is_linear_mapping X Y Aop -> f=Aop U->
(* Hypothesis that A is a linear mapping from X to Y*)
(forall (h:R),is_linear_mapping (Xh h) (Yh h) (Ah_op h))->
(*x Hypothesis that Ah is a linear. mapping from Xh to Yh for each hx*)
(forall (h:R), is_bounded_linear X (Xh h) (rh h))->
(* Hypothesis that rh is a bounded linear
operatior (restriction) from X to Xh for each hx*)
(forall (h:R),is_bounded_linear Y (Yh h) (sh h))->
(* Hypothesis that sh is a bounded linear
operator (restriction) from Y to Yhx)
is_bounded_linear Y X E ->
(* Hypothesis that E is a bounded linear operator from Y to Xx)
U=E £->
(* Defining solution in continuous space (true solution)x*)
(forall (h:R), is_bounded_linear (Yh h) (Xh h) (Eh h)) ->
(* Hypothesis that Eh is a bounded linear operator from Yh to Xh for each hx)
(forall h:R, is_finite (operator_norm(Eh h))) ->
(* Hypothesis that ||Eh|| is finitex*)
(uh= Eh h (sh h £))->
(* Defining a discrete solution uhx*)
( Ah_op h uh = sh h f)-> (*f =fhx)
(forall (h:R), th h U= Eh h (Ah_op h (zh h U)))->
(¥uh =Eh *Ah *uh, where Eh*Ah=I%)
(forall h:R, minus (Ah_op h (rh h U)) (sh h (Aop U)) <> Hierarchy.zero)->

is_lim (fun h:R= norm (minus (rh h (E(£))) (Eh h (sh h (£))))) 00 .
(*Convergencex)



