
Security Verification of Low-Trust Architectures
Qinhan Tan

∗

qinhant@princeton.edu

Princeton University

Princeton, New Jersey, USA

Yonathan Fisseha
∗

Shibo Chen
∗

yonathan@umich.edu

chshibo@umich.edu

University of Michigan

Ann Arbor, Michigan, USA

Lauren Biernacki

biernacl@lafayette.edu

Lafayette College

Easton, Pennsylvania, USA

Jean-Baptiste Jeannin

jeannin@umich.edu

University of Michigan

Ann Arbor, Michigan, USA

Sharad Malik

sharad@princeton.edu

Princeton University

Princeton, New Jersey, USA

Todd Austin

austin@umich.edu

University of Michigan

Ann Arbor, Michigan, USA

ABSTRACT
Low-trust architectures work on, from the viewpoint of software,

always-encrypted data, and significantly reduce the amount of hard-

ware trust to a small software-free enclave component. In this paper,

we perform a complete formal verification of a specific low-trust

architecture, the Sequestered Encryption (SE) architecture, to show

that the design is secure against direct data disclosures and digital

side channels for all possible programs. We first define the secu-

rity requirements of the ISA of SE low-trust architecture. Looking

upwards, this ISA serves as an abstraction of the hardware for the

software, and is used to show how any program comprising these

instructions cannot leak information, including through digital side

channels. Looking downwards this ISA is a specification for the

hardware, and is used to define the proof obligations for any RTL

implementation arising from the ISA-level security requirements.

These cover both functional and digital side-channel leakage. Next,

we show how these proof obligations can be successfully discharged

using commercial formal verification tools. We demonstrate the ef-

ficacy of our RTL security verification technique for seven different

correct and buggy implementations of the SE architecture.

CCS CONCEPTS
• Do Not Use This Code→ Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for

Your Paper.

KEYWORDS
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

∗
All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

ACM Reference Format:
Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste

Jeannin, Sharad Malik, and Todd Austin. 2023. Security Verification of Low-

Trust Architectures. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’23), November 26–30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 20 pages. https://doi.org/

10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Security verification of a computing system, while highly desirable,

is a challenging task that often falls short of the desired level of

guarantees. The verification must be applied to all trusted com-

ponents of the system, including hardware and software. Unlike

penetration testing, which consists of focused attempts to infiltrate

a system, formal security verification is a proof that a particular

security vulnerability does not exist within a design. Unfortunately,

most systems today receive little to no formal security verifica-

tion, due to design complexity challenges and limitations of formal

proof mechanisms. Design complexity manifests in the sheer size

of today’s secure systems, which comprise architectures, microar-

chitectures, and deep software stacks, all of which must be trusted

and verified. These complex systems easily exceed the capabilities

of today’s formal proof mechanisms, such as SAT/SMT solvers,

model checkers, and proof assistants. Consequently, incomplete

penetration testing still remains the backbone of today’s security

verification efforts.

Low-trust architectures have recently emerged as a secure sys-

tem design framework that i) eliminates all trust in software, and

ii) significantly reduces the amount of hardware trust to a small,

software-free enclave component. These properties make formal

security verification feasible by shrinking the system aspects that

must be trusted and verified. In this paper, we focus on the security

verification of Sequestered Encryption (SE) [17]—a low-trust archi-

tecture that claims to protect the confidentiality of sensitive data

against direct data disclosures and digital side channels. Direct dis-

closures refer to any direct leakage of plaintext values through SE

computation. Digital side channels represent any indirect leakage of

plaintext values through non-analog information paths, including

analysis of ciphertext values, operational timing, program con-

trol flow, memory access patterns, or microarchitectural resource

https://orcid.org/0000-0003-2475-3675
https://orcid.org/0009-0000-9645-2885
https://orcid.org/0000-0002-9522-8934
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

SE ISANative ISA

Program

SE EnclaveUntrusted
Circuits

ENC
ISA

Compose

RTL

Execute onExecute on

Property Elevation

Native ISA

Untrusted
Circuits

Proof Obligations Discharged

Input

Output

SE Background – Section 2
Threat Model – Section 3

RTL-level Verification – Section 5
RTL-level Experiment – Section 6

ISA-level Verification – Section 4

(proved for all programs)

(proved for certain implementations)

Figure 1: Proof System and Paper Organization

usage. Currently, SE Enclave does not protect against analog in-

formation flow paths, such as frequency throttling [65, 93], power

analysis [42, 60, 69], electromagnetic snooping [4, 77, 86], etc.

Within SE, the instruction set architecture (ISA) consists of the

native instructions, termed the native ISA, and a set of secure in-

structions termed the SE ISA. The native ISA contains insecure

instructions to be executed by unsecured (or untrusted) compo-

nents that do not have access to secret values. In contrast, the SE

ISA consists of secure instructions that operate on encrypted data

and are executed solely in its software-free enclave component. It

is the design of this SE Enclave and ISA extension that ensures the

cryptographic-strength confidentiality of the sensitive data.

In this work, we perform a complete formal verification of the

SE low-trust architecture to show that the design is secure against

direct data disclosures and digital side channels for all possible

programs. The steps involved are illustrated in Figure 1. First, we

articulate a set of instruction-level security requirements that SE

ISAmust fulfill to prevent disclosures or digital side channels. Going

upwards to the software, these are used in hand-driven proof tech-

niques to show that no SE program can possibly create a disclosure

or digital side-channel leakage. Going downwards toward the hard-

ware, the ISA security requirements necessitate security properties

to be enforced in the hardware design, typically called RTL-level

security properties. Last, we propose a verification scheme to for-

mally verify RTL-level properties using an off-the-shelf commercial

formal verification tool (Cadence’s JasperGold [23]) on real designs.

Our evaluation experiments show that our RTL-level verification

scheme can prove the security properties being met by correct

implementations, and also capture security leakages in flawed im-

plementations. This demonstrates the practical applicability of our

proposed verification scheme to designs at scale. To our knowledge,

this is the first formal verification of a secure computing framework

that extends to both direct disclosures and digital side channels, for

all possible programs running on a verified computing platform.

A key takeaway from this work is that low-trust architectures

lend themselves to formal security verification.We find two primary

reasons for this outcome. First, the nature of low-trust architectures

eliminates any trust in software. Since our verification ensures

that the software can only see values encrypted under semanti-

cally secure cryptosystems [41], software verification is not part of

the overall proof system. Using only hand-driven proof, we show

that any program using our ISA cannot disclose or create digital

side channels, thus ending concern for any software. In traditional

security verification, where properties must be proven partly in

hardware and software, often the complexity of software reasoning

leads to compromises on what can be guaranteed in these systems.

Second, the simplicity of the low-trust SE hardware enclave, having

minimal state and control logic, allows all of our ISA-level-based

security assertions to complete on the actual RTL of the design,

ensuring no gaps between the deployed design and any potential

abstractions employed to enable formal verification. We are confi-

dent that the approach we have detailed in this paper will extend

itself to future low-trust architectures as they become available.

Contributions. This work observes and demonstrates how low-trust

architectures enable end-to-end software-to-hardware verification

of strong security attributes, i.e., confidentiality and digital side-

channel free execution. Below is the list of specific contributions:

• Formal SE ISA Semantics: Define formal SE ISA semantics that

enable privacy-related reasoning.

• Software-Level Proof: Povide proof of confidentiality and side-

channel freedom for all programs written using this ISA.

• Hardware Proof Obligations: Provide proof obligations for any
hardware implementation of the SE ISA to serve as the interface

between the verification of the software and the hardware.

• Hardware-Level Proof:
– Provide a list of security properties that meet the hardware

proof obligations for a specific SE hardware implementation.

– Demonstrate that these properties can be checked using stan-

dard information flow tracking (IFT) and commercial off-the-

shelf IFT tools with novel RTL-verification elements.

– Demonstrate how the checking detects bugs in four buggy

different implementations that violate these properties.

To further clarify the contributions of this work, we do not claim

generalizability beyond the small enclaves in low-trust architectures

detailed in §2. In fact, the increased level of verification is enabled

by the low-trust architecture’s property of limiting trust to only

within the small SE Enclave, which in turn eliminates all trust in

software and significantly reduces the degree of hardware that

must be trusted (and thus needs to be verified) to ensure the proof

properties.

Figure 1 also serves to illustrate our paper organization. In § 2, we

provide a brief overview of SE. In § 3, we articulate the threat model

and the scope of this work. In § 4, we formalize ISA-level properties

and prove the program-level properties inducted from the ISA-level

properties followed by proof responsibilities discharged to the RTL-

level. In § 5, we present our modeling and verification strategy at

the RTL-level. In § 6, we describe the SE design variances and apply

our verification scheme to these designs. We close the paper with

related works (§ 7) and final conclusions (§ 8).

Artifacts, including the SE Enclave implementation and ver-

ification scripts, have been submitted along with this work for

evaluation and will be made public on publication of this work.

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

2 BACKGROUND
In this section, we provide an overview of Sequestered Encryption

(SE) [17] and show that the unique characteristics and design prin-

ciples of SE open up new opportunities for hardware verification to

provide complete reasoning of the underlying computing paradigm

without the knowledge of specific programs. A more detailed study

of the SE design, including comparisons with related work, can be

found in [17].

2.1 Sequestered Encryption (SE)
Sequestered Encryption (SE) is a hardware-based technique to pro-

tect the confidentiality of secret third-party data during computa-

tion. With SE, third-party data is encrypted in a trusted, client-side

environment and offloaded to a server for computation. The server

application operates on third-party data using SE’s ISA instructions

backed by custom hardware support. Specifically, SE extends the

conventional ISA to include secure instructions that operate on

ciphertext data. We call these additional secure instructions the SE

ISA. These instructions are dispatched to SE’s hardware enclave,

which computes the requested operation on the source ciphertexts.

The SE Enclave works to significantly reduce software and hard-

ware trust by sequestering all sensitive computation to the hard-

ware enclave. As such, the SE Enclave design claims that sensitive

private data cannot be disclosed by any SE instruction sequence,

either directly through a disclosure or indirectly through a digital

side channel. This claim covers all digital side channels, including

cryptanalysis of the ciphertext emitted by the Enclave, Enclave op-

erational timing, and any possible influence the SE Enclave has on

the system’s memory access patterns and control flow. The goal of

this paper is to formalize and prove these claims for the SE Enclave,

through proofs on the SE instruction set operational semantics and

their proof obligations expressed in the RTL implementation in the

SE Enclave.With these claims proven, the SE Enclave represents
the first enclave that has been formally verified to not suffer
from software vulnerabilities or digital side channels.

Data
(Resultant
Ciphertext)Source

Ciphertext(s)

ENC(x)

ENC(y) ENC(x+y)

Control
Signals

ENC(c)

A
LU

RNG
Key

Register

D
E
C

Valid
E
N
C

Figure 2: SE Enclave Design

2.2 SE Instruction Set Architecture (ISA)
SE extends the native ISA with secure instructions that explicitly
operate on ciphertext data. When the processor decodes a secure

instruction from the SE ISA, the instruction is dispatched to the SE

Enclave for processing. This operation mirrors how native instruc-

tions are dispatched to functional units in a conventional processor.

Insecure instructions in the native ISA are dispatched to unsecured

functional units. SE makes no claim about these instructions, as

they are executed in an untrusted environment.

To ensure that sensitive data does not leave the enclave, SE re-

stricts its secure instructions to be ‘data-oblivious,’ only supporting

arithmetic, logical, comparison, and shift operators. The classes of

instructions supported by the SE ISA are summarized in Table 1.

Specifically, the SE ISA does not support control flow or memory

instructions, as these would innately leak information about sen-

sitive data through architectural states like the program counter.

Insecure versions of these instructions (i.e., those assumed to be

operating on public data) are still present in the native ISA. SE en-

ables secure control flow via an encrypted conditional move (CMOV)
instruction. Secure CMOV instructions function as ternary operators,

where a destination register is updated based on the value of some

condition, akin to predicated instructions. This primitive enables

programmers to make decisions on secret conditions, mimicking

the logic of if-statements, in a safe manner. Finally, to perform

plaintext-ciphertext operations, the processor must first encrypt

the plaintext value using SE’s ENC instruction before passing the

resultant value to another secure instruction for computation.

Secure Insecure

Instruction Class Example (SE Enclave) (Native)

Encryption ENC Encryption

Arithmetic ADD Addition

Logical AND Logical And

Comparison LT Less Than

Shift SLL Logical Left Shift

Conditional CMOV Conditional Move

Memory LD Load

Control Flow JMP Jump

Table 1: Summary of ISA

2.3 SE Enclave Implementation
The SE Enclave is architected as a small hardware functional unit

embedded within the execute stage of the pipeline. This hardware

unit includes storage of the secret key under which the user data is

encrypted. When instructions are dispatched to the SE Enclave, the

unit decrypts ciphertext source operands under this key, computes

the requested operation in plaintext, then re-encrypts the result.

Namely, the syntax for a secure ADD instruction is ENC(DEC(r1)
ADDDEC(r2)) This operation is illustrated in Figure 2. The resultant
ciphertext value is the only value that leaves the enclave. The SE

Enclave implementation is trusted and assumed to be free of direct

data leakage. Further, the SE Enclave is implemented to have data-

independent timing, such that timing the execution of the enclave

cannot reveal the plaintext values of ciphertexts. For example, the

SE Enclave cannot contain hardware optimizations that accelerate

instructions for specific inputs (e.g., forwarding for multiply-by-

zero [43]), as these optimizations leak information via timing.

While the design in Figure 2 implements the syntax of the SE ISA,

the SE Enclave can have many instantiations, including different

implementations of encryption and decryption. Below, we discuss

some of the different variations of SE Enclave presented in [17]. In

this work, we present different RTL instantiations in Section 6.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

2.3.1 Encryption Scheme. In SE, a value (𝑚) is encrypted by ap-

pending a fresh random salt (𝑢), then applying a strong pseudoran-

dom permutation (PRP), such as a block cipher. In this encryption

scheme, both the data value and salt are 64 bits long, thereby pro-

ducing a 128-bit ciphertext. This scheme can be implemented in

hardware with a variety of symmetric or asymmetric encryption

ciphers built as rolled or unrolled implementations. Prior work

analyses three cryptographic ciphers for use within SE: AES-128,

QARMA, and Simon. In this work, we also consider the popular

asymmetric public-private key cryptosystem RSA.

The SE encryption scheme salts each ciphertext value with fresh

randomness through the True Random Number Generator (TRNG)

to ensure that ciphertexts are diversified to thwart cryptanalysis

attacks and some side-channel attacks, i.e., CIPHERLEAKS [63].

This requirement is specified in the ISA and can be ensured by a

structural RTL check.

2.3.2 Optimizations. SE can also be implemented with internal

optimizations that seek to improve its performance. For example,

[17] proposes caching recently decrypted ciphertexts in order to

bypass the decryptor for instructions with data dependencies. Opti-

mizations have the potential to invalidate the security claims of SE.

In this work, we assess several secure and insecure optimizations

of the SE Enclave to demonstrate that the secure optimizations are

fully verified and the insecure optimizations are detectable by our

novel verification technique.

2.4 Opportunities for Hardware Verification
SE’s security claims are based on the assumption that the hardware

is secure. The SE architecture positions itself well for formal verifi-

cation because it has a minimal hardware footprint and possesses

no trusted software, which is in sharp contrast to other Trusted

Execution Environments (TEEs), like Intel SGX. As noted by prior

work [26], formally reasoning about existing enclaves including

Intel SGX is infeasible as any proof would have to model all proces-

sor features that exposed registers. Further, such work would be

short-lived as any architectural modifications would invalidate this

security proof. Rather, SE’s compact design allows it to be verified

independently of other structures of the processor, thus avoiding

the deficiency of verifying the whole processor. In this work, we

formally verify SE’s security claims to establish trust in the SE ISA

and its implementation.

3 THREAT MODEL
In this section, we describe and discuss our threat model. We first

present our security goals. This is followed by listing the attacker’s

capabilities which can compromise these goals. Finally, we describe

the root of trust which specified the components that can be as-

sumed to be trusted.

3.1 Security Goals
In this work, we will formally verify that SE ISA and SE Enclave

RTL implementations preserve data confidentiality. Specifically:

• Any program should not leak sensitive data through architectural

states and/or side channels through instructions from the SE ISA.

• Any SE secure instruction or sequence of instructions should

not leak sensitive data through microarchitectural states and IO

signals of the SE Enclave.

3.2 Attacker Capabilities
In this work, the attacker’s goal is to, within a reasonable amount

of time, infer the plaintext secret values by analyzing the program’s

computation results, snooping on SE Enclave’s IO signals, or analyz-

ing the program execution time. We consider attackers to possess

the following capabilities:

• The attacker can observe and/or arbitrarily change digital signals

outside of the SE Enclave including signals on SE Enclave IO.

These signals can be observed at every cycle even though each

cycle may not result in an architectural state update.

• The attacker can run any program using secure/insecure instruc-

tions, and measure the program execution time.

• The attacker cannotmeasure and/or arbitrarily change the states

inside the SE Enclave and the physical characteristics of the chip.

3.3 Root of Trust
This work assumes the following components and algorithms,

which have been studied extensively in prior works, can be trusted

and meet design requirements:

• True Random Number Generator (TRNG). We assume there exist

TRNG designs that are capable of supplying at least 𝑠 (for example,

𝑠 = 64 in our designs) bits of random number per cycle. Prior

works have proposed TRNGs with different designs [2, 14, 15, 28–

30, 32, 46, 50, 52, 61, 64, 75, 76, 80–82, 90, 96, 98–100, 105, 106].

Recent laser-based random number generators can generate up

to 250 terabits per second [58]. This approach is also shown to

be bias-free in nature[94].

• Key Exchange Mechanism. We assume there exists a safe key

exchange mechanism for the user and SE Enclave to establish

shared keys. Key exchange methods like RSA key exchange,

Diffie-Hellman (DH), and Elliptic-curve Diffie-Hellman (ECDH)

have been well-studied [3, 13, 21, 31, 45, 49, 67, 72, 79]. Public

key infrastructure (PKI)[19, 53, 70, 95] has been developed over

the years to provide authenticity guarantees. In SE, key exchange

can be done using a standard small-footprint hardware-only im-

plementation in the Enclave, as in typical Hardware Security

Modules [10], which puts the key directly into the key register

and does not interact with the rest of the Enclave. The only out-

put of the key register is shown in Figure 2 and our verification

proves the key is secure once in the key register. Verifying key

exchange is orthogonal to this work.

• Encryption Scheme.We assume popular encryption algorithms are

strong and robust against crypto-analysis when paired with long

enough keys. Multiple hardware-friendly encryption schemes

have been proposed and can be used in SE, e.g., AES-128[47, 51],
Simon-128/128[16], QARMA11-128-𝜎1[11].

A more detailed account of RTL-level assumptions that flow from

the above threat model will be discussed in § 5.1.

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

4 SE ISA MODELING AND ANALYSIS
A conventional ISA does not place any requirements on microar-

chitectural states and state transitions as it only requires functional

correctness. However, the SE ISA needs to make explicit and verifi-

able rules such that the system can guard off software-based attacks.

On the hardware side, the microarchitectural implementations need

to faithfully follow the design requirements set by the ISA in a ver-

ifiable manner. The security properties resulting from these rules

should be attested with formal proofs on the implementation side.

From the perspective of a program defined in such an ISA, there

are two types of data: user private data and public data. Private
data are sensitive data that are always encrypted under secured

keys. The value of private data should only be visible to trusted and

formally verified hardware components and remain invisible to any

software or untrusted components. Public data are non-sensitive

data that are stored in plaintext, i.e., program code, public constants,

etc. While the conventional ISA is sufficient to operate on public

data, a specialized set of instructions needs to be implemented

in order to process private data securely. This set of secure in-

structions specifies additional requirements, which are not needed

for public data only programs, to securely execute programs that

compute on secured sensitive data. While previous work [17] has

described these properties informally, we give precise definitions

of the properties in this work and state proof obligations for the

RTL verification to ensure that the implementation is faithful to the

ISA specification. These requirements can be organized into two

groups: Direct Disclosure Safety and Indirect Disclosure Safety.
We will now consider them one at a time in the following sections.

4.1 ISA Direct Disclosure Safety Requirements
SE ISA must define the trust boundary between secure instruc-

tions and insecure instructions. This boundary is then guaranteed

by the architecture. Inappropriate disclosure at the ISA level can

happen in two ways: first, instructions could directly disclose the

private plaintext data to insecure locations (e.g., registers that are
readable by the attacker); second, the ciphertext is produced by

a weak encryption cipher, making it vulnerable to cryptanalysis

attacks. Therefore, for any valid SE program, which is a sequence

of instructions defined by the secure ISA, we have the following

two requirements. First, we put the obvious restriction that there

are no direct disclosures; and second, we put a requirement on the

quality of the ciphertexts produced by the secure instructions.

4.1.1 Direct Information Disclosures. SE instructions take either

a ciphertext or a public plaintext and produce a ciphertext as a

result. Any secret data must never be disclosed to insecure (i.e.,
non-SE) instructions. This is reflected at both architectural and

microarchitectural levels since SE uses encryption to hide sensitive

information from untrusted software and hardware. The encryption

module marks the trust boundary between the hardware compo-

nents since all data is re-encrypted before it is emitted out of the

trusted execution component and exposed to untrusted software

and hardware. Encrypted data can be safely stored in untrusted

storage or computed on by an insecure instruction.

The instruction level properties lift to programs naturally. All SE

instructions produce ciphertext and there is no decrypt instruction

in the ISA. Thus, non-SE instructions cannot get access to the plain-

text. From this, we conclude that any composition of SE instructions

and non-SE instructions cannot disclose the secret data.

4.1.2 Quality of Ciphertexts. Ciphertexts need to be safe from

cryptanalysis when disclosed to an attacker of reasonable strength.

In this work, we consider security against chosen-ciphertext attacks

(CCA), a standard attack model for cryptanalysis where the attacker

has oracle access to the encryption function and an arbitrary col-

lection of old ciphertext-plaintext pairs from the SE Enclave. This

model is more powerful than that of chosen plaintext attacks (CPA).

We assume that the attacker has bounded computational power

and storage space, and does not have access to the encryption key

a priori. If the encryption scheme used by the SE Enclave has indis-

tinguishability under CCA (termed CCA Security), then an attacker

has close to a random-guess success rate in learning the plaintext

value of a new ciphertext released by the SE Enclave, even if the

attacker has amassed an arbitrary collection of previous ciphertext-

plaintext pairs. In the following sections, we detail the encryption

scheme used by the SE Enclave and how it achieves CCA security.

The single-instruction CCA security described above immedi-

ately lifts to programs involving multiple instructions since CCA

security in the single-message case implies CCA security in the

multiple-messages scenario.

4.2 ISA Indirect Disclosure Safety Requirements
Another important requirement that the ISA specifies and the under-

lying design should enforce is that there cannot be any observable

digital effects correlated to the plaintext value of the secrets. The

most prominent indirect disclosure is based on the digital side chan-

nel of the program’s timing behavior. Similarly, the control flow and

memory access pattern of the program can produce information

about private user data without direct disclosure. The ISA must

restrict all three indirect disclosures.

4.2.1 Instruction Stream Side-Channels. It is necessary that knowl-

edge of which instructions get executed does not yield any more

information than what is known at compile time. Intuitively, such

information can be derived only if there is a relationship between

the control-flow structures of SE and the secret data of the user.

However, insecure control-flow instructions do not see secret values

by the definition of the ISA thus control-flow decisions cannot give

any information about the secret. The only control-flow instruction

that operates on secret data is the secure CMOV instruction. However,
as a secure SE instruction, it always produces ciphertexts with the

property described in §4.1.2. Unlike general control-flow instruc-

tions, like jmp, which influence which instructions are executed,

CMOV always moves encrypted (and thus indistinguishable) data

into the same destination register. Therefore, although CMOV makes

a move decision based on secret data, it does not expose the secret.

Consequently, observing the stream of executed instructions does

not give the attacker a better-than-chance shot at guessing the se-

cret. This property lifts to the program level from the instruction’s

property since all other disclosures from secure instructions to inse-

cure instructions are removed by the direct disclosure restrictions

from § 4.1.1.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

4.2.2 Address Stream Side-Channels. Side channels in programs

can also exist in their address streams where memory access pat-

terns can expose information about private data indirectly. Similar

to § 4.2.1 above, such indirect disclosure is possible only when

there is a relationship between the user’s private data and memory

access instructions. However, the insecure memory instructions,

such as load and store, do not have access to secret values. The

only instruction that writes data to a location is the secure CMOV
instruction, which we have argued in § 4.2.1 to be side-channel free.

Since all secure SE instructions do not disclose secrets by § 4.1.1

and the ciphertexts produced have the property described in §4.1.2,

we conclude that all programs composed of SE instructions do not

leak secret information through their address access streams.

4.2.3 Instruction Timing Side-Channels. A final possible side chan-

nel we consider is timing variance in secure instructions that can

leak information about the secret data indirectly. First, we require

all secure instructions not to have timing variance that correlates

to secret data. By the direct disclosure argument in §4.1.1 we know

that insecure SE instructions do not have access to secret data thus

any timing variance they might have in their execution (including

nondeterministic variance) cannot be correlated to secret values.

From these two properties of instructions, we can lift to program-

level properties naturally. Specifically, a program composed of SE

instructions executed on two different secret data will have exactly

the same timing behavior if we fix the rest of the execution envi-

ronment. All variations that might occur in this setting would be

caused by insecure instructions possibly exhibiting nondeterminis-

tic behavior, which is always independent of the secret data. Thus

the timing of programs does not reveal any secrets.

4.3 Formalization of ISA Properties
While designing an ISA is already a challenging task that must

carefully tread the interface between the hardware’s behavior and

the software’s expectations, stating security principles at the ISA

level is an even harder task. Fortunately, the SE ISA comprises a

few unique instructions with precise semantics and security re-

quirements. This allows us to give a formal treatment to some of

the informal descriptions presented in § 4.1 and § 4.2 regarding

disclosure and side channels, respectively. To formally reason about

the ISA level properties we first start by defining a minimal syn-

tax recognized by the secure SE processor. We allow an arbitrary

but finite set of registers observable by the attacker except for the

keyReg which is private to the secure SE Enclave. The instruction

enc r1 is the encryption instruction that encrypts the value in the

parameter register and places the result back into the same regis-

ter. We abstract all binary operations, e.g., addition, subtraction,
and shifts, to the instruction bop r1, r2 where some operation is

performed on the values of the parameter registers, and the result

is placed into the first parameter. Finally, a cmov is written as an

if-else statement with a single assignment instruction as the body.

Note that, unlike standard imperative languages, we do not allow

conditional if statements with arbitrary bodies and there is no

while construct either. The sequential composition operator c; p is

a syntax restriction, forcing it to be right-associative. Enforcing it

syntactically simplifies the semantics and type system, yet has no

significant effect since sequential composition is associative. Figure

3 presents this syntax of the SE language.

⟨Registers 𝑒⟩ ::= 𝑟1 | · · · | 𝑟𝑛 | keyReg | 𝑏 | [𝑏]
⟨Commands 𝑐⟩ ::= enc 𝑟1 | bop 𝑟1, 𝑟2 | skip

if 𝑟1 : 𝑟2 ← 𝑟3 else 𝑟2 ← 𝑟4

⟨Program 𝑝, 𝑞⟩ ::= 𝑐 | 𝑐;𝑝

Figure 3: Minimal syntax for the SE ISA.

The semantics of the language is given by the small-step seman-

tics in Figure 4. The semantics is entirely standard in imperative

languages with the exception of the encryption and decryption op-

erations and the time function 𝑡 . First, all values are defined on finite

length bits, i.e.,𝑏𝑖𝑡𝑠 = {0, 1} 𝑗 where 𝑗 ∈ N is a non-deterministically

picked natural number, which allows bit-level operators to be well

defined in bop. Bits of all zeros can be interpreted as a boolean false

and, conversely, bits of all ones can be interpreted as a boolean true.

Next, we use a simple and well-known encryption scheme which

we present here for completeness. Details of this construction can

be found in introductory textbooks such as [56, 83]. Let 𝐹𝑢𝑛𝑐 be

the set of all functions of type {0, 1}𝑛 → {0, 1}𝑛 and 𝐹 : {0, 1}𝑛 ×
{0, 1}𝑛 → {0, 1}𝑛 be a keyed pseudorandom function inducing a

distribution on 𝐹𝑢𝑛𝑐 . As usual, a bijective pseudorandom function

𝑃 is a pseudorandom permutation. We will write 𝐹𝑘 and 𝑃𝑘 defined

as 𝐹𝑘 (·) = 𝐹 (𝑘, ·) and 𝑃𝑘 (·) = 𝑃 (𝑘, ·). A strong pseudorandom

function 𝐹 is a pseudorandom function such that any polynomially

bounded adversary A has a negligible advantage in differentiating

between 𝐹 and the random function 𝐹 ′ even when given the inverse
function 𝐹−1. A strong pseudorandom permutation 𝑃 is a bijective

strong pseudorandom function.

Now we can define the encryption scheme used by the SE en-

clave. Let SE = ⟨𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (·, ·), 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (·, ·)⟩. The encryption key 𝑘

is uniformly picked from keys of length 𝑠 +𝑛. The message space is

M = {0, 1}𝑛 , i.e., messages of length 𝑛. The encryption scheme is

constructed as follows for any𝑚 ∈ M:

𝑢 ← 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑠) 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑘,𝑚) = 𝑃𝑘 (𝑚 | |𝑢)
𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑘,𝑚) = 𝑃−1

𝑘
(𝑚) [0 : 𝑛] 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑘, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑘,𝑚)) =𝑚

for any strong keyed pseudo-permutation 𝑃 of block length 𝑠 + 𝑛,
where | | is defined as string concatenation. The random value 𝑢 is

sampled from the uniform distribution of strings of length 𝑠 .

This scheme, SE, is known to be secure against chosen cipher-

text attacks (CCA-secure) because an attacker has only negligible

advantage in learning about𝑚 given the ciphertext 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑘,𝑚).
In Appendix A, we give a formal definition of CCA security (Defi-

nition A.1) and show that SE is CCA-secure (Theorem A.1).

To simplify the semantics of the ISA, we implicitly make the

assumption that the polynomially-bounded attackerA has a stricter

bound on the number of queries it can make to the encryption

oracle. Intuitively, this assumption guarantees that the probability

of the event that the same random value 𝑢 is used for two different

encryption oracle calls is effectively zero. Given this assumption,

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

we take the distribution of the ciphertexts to be truly uniform.
1

This assumption only allows us to avoid the more complicated

probabilistic semantics that would be required to properly model

this negligible chance and otherwise has no effect on the semantics.

In the ISA semantics, we assume there is a truly uniform function

that can generate 𝑠 bits for every encryption query and that a strong

pseudorandom permutation is used. We justify these assumptions

in §5.2 by discharging verification responsibilities to the RTL-level

verification, as summarized in Table 2. This leaves us with two tasks

at the ISA level: i) ensure that 𝑢 is of some pre-fixed length 𝑠 on

every encryption, and ii) ensure that a fresh 𝑢 from the random

number generator is used for each encryption query. We formalize

these two tasks in the semantics in the rest of this section.

The state of the system is represented by a set of registers 𝑅

containing values of 𝑏 ∈ 𝑏𝑖𝑡𝑠 and the syntactically decorated [𝑏].
Marking values representing ciphertexts with brackets allows us to

consider all ciphertexts to be effectively equivalent once we define

the equivalence class. The function 𝜎 : 𝑅 → 𝑏𝑖𝑡𝑠 provides the map-

ping. Let Σ be the set of state maps 𝜎 and allow 𝜎1, · · · , 𝜎𝑛 to range

over Σ. There are three syntactic categories: programs, commands,

and registers. The small-step arrow→𝑟 produces bits by reading

registers. We combine programs and commands into one syntactic

category for the semantics, since all commands are programs; this

makes the semantics more readable. The small-step arrow→ for

this combined syntactic category is defined over configurations

of ⟨𝑝, 𝜎⟩. We write 𝑢 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑠) to say the value 𝑢 is sampled

from the uniform distribution of strings of length 𝑠 . The function

𝑡 : Σ→ Nmodels the timing behavior of the system by allowing an

arbitrary finite function to decide how long it takes for the instruc-

tion to complete execution. In a concrete design, the time taken

can depend on a number of system and instruction level properties

thus we allow the system to make this decision based on the entire

system state 𝜎 .

The SE language semantics is a restricted fragment of standard

imperative languages. For example, the conditional move com-

mands (CMOV-T and CMOV-F) reflect this in that the bodies are single

assignment instructions instead of the traditional recursive bod-

ies. Additionally, the assignment is forced to the same location

in both the true and false branch of the conditional. There is no

use of exposed store or assignment operator in the language, but

one could mimic it using the existing operators with the restric-

tion that only ciphertext is written to locations. The occurrence

of register symbols is treated as usual as a free variable (REG). The
encryption instruction (ENC) encrypts the value found in the pa-

rameter register and places it back in the parameter. Similarly,

the binary operations instruction (BOP) first decrypts the values,
and computes on the plaintext values using the semantic operator

⊕ ∈ {+, <<, >>,−, · · · }, then finally re-encrypts the resulting value
using the 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 relation, and writes the ciphertext back into the

first operand register. Finally, the sequence operator (SEQ) takes
single steps transforming the head of the sequence until the base

case of skip is reached.

1
This effectively means the encryption scheme is a perfect encryption scheme. Strictly

speaking, the pseudorandom permutation of the encryption scheme needs to be

swapped for a random permutation to achieve this. But, any polynomial attacker

only loses a negligible advantage due to this swap.

Since the SEQ is the only inductive rule in the semantics, the

program structure is that of a list instead of a tree as usual. Conse-

quently, the small-step semantics never diverges in its execution.

This property is essential for the soundness proof in Theorem 4.2.

The security reasoning is done within the type system thus keeping

the semantics standard.

cmov-t

⟨𝑟1, 𝜎⟩ →𝑟 [𝑐1] ⟨𝑟3, 𝜎⟩ →𝑟 [𝑐3]
⟨𝑘𝑒𝑦𝑅𝑒𝑔, 𝜎⟩ →𝑟 𝑘

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐1, 𝑘) = 𝑡𝑟𝑢𝑒 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐3, 𝑘) =𝑚

𝑢 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑠) 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚 | |𝑢, 𝑘) = [𝑐5]

⟨if 𝑟1 : 𝑟2 ← 𝑟3 else 𝑟2 ← 𝑟4, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎 [[𝑐5]/𝑟2]⟩

cmov-f

⟨𝑟1, 𝜎⟩ →𝑟 [𝑐1] ⟨𝑟4, 𝜎⟩ →𝑟 [𝑐4]
⟨𝑘𝑒𝑦𝑅𝑒𝑔, 𝜎⟩ →𝑟 𝑘

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐1, 𝑘) = 𝑓 𝑎𝑙𝑠𝑒 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐4, 𝑘) =𝑚

𝑢 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑠) 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚 | |𝑢, 𝑘) = [𝑐5]

⟨if 𝑟1 : 𝑟2 ← 𝑟3 else 𝑟2 ← 𝑟4, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎 [[𝑐5]/𝑟2]⟩

reg

𝜎 (𝑟1) = 𝑏

⟨𝑟1, 𝜎⟩ →𝑟 𝑏

enc

⟨𝑟1, 𝜎⟩ →𝑟 𝑛 ⟨𝑘𝑒𝑦𝑅𝑒𝑔, 𝜎⟩ →𝑟 𝑘

𝑢 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑠) 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑛 | |𝑢, 𝑘) = [𝑐1]

⟨enc 𝑟1, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎 [[𝑐1]/𝑟1]⟩

bop

⟨𝑟1, 𝜎⟩ →𝑟 [𝑐1] ⟨𝑟2, 𝜎⟩ →𝑟 [𝑐2]
⟨𝑘𝑒𝑦𝑅𝑒𝑔, 𝜎⟩ →𝑟 𝑘 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐1, 𝑘) = 𝑛 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐2, 𝑘) =𝑚

𝑢 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑠) 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 ((𝑛 ⊕𝑚) | |𝑢, 𝑘) = [𝑐3]

⟨bop 𝑟1 𝑟2, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎 [[𝑐3]/𝑟1]⟩

seq

⟨skip; q, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨q, 𝜎⟩

⟨c, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎′⟩

⟨c; p, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨skip; p, 𝜎′⟩

Figure 4: The small-step semantics of the SE Enclave.

The type system used to reason about the security of information

flow in the SE language is presented in Figure 5. The types are

generated by the following grammar

⟨Security labels ℓ⟩ ::= public | private
⟨Program Types 𝜏⟩ ::= ⟨ℓ⟩ 𝑝𝑟𝑜𝑔 | ⟨ℓ⟩

Let 𝐿 = {ℓ1, · · · , ℓ𝑛} be the set of security labels and L = ⟨𝐿, ≤⟩
by the bounded security lattice generated by 𝐿. We assume 𝐿 =

{𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒} and that 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 is the top of the lattice and 𝑝𝑢𝑏𝑙𝑖𝑐
is the bottom of the lattice. Generally, any security lattice can be

decomposed into a low and high partition so our assumption is

without loss of generality. The typing environment Γ maps register

locations to their types. We consider all register locations to be

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

public except the keyReg which is marked as private, thus,

Γ(𝑟) =
{
private, 𝑟 = 𝑘𝑒𝑦𝑅𝑒𝑔

public, otherwise

The rule REG simply states this in the inductive rules. All constant

values from 𝑏𝑖𝑡𝑠 start out as public (rule CONST). Similarly, the skip
instruction is always typed as public (rule SKIP). The instruction
seq is typed as public if the two programs that are composed are

already typed as public prog. The instructions CMOV and BOP are

only required to demonstrate their operands are public and can be

immediately typed as public prog.2

reg

Γ(𝑟) = ℓ

Γ ⊢ 𝑟 : ℓ

const

𝑏 ∈ 𝑏𝑖𝑡𝑠
Γ ⊢ 𝑏 : public

enc

Γ ⊢ 𝑟1 : public
Γ ⊢ 𝑒𝑛𝑐 𝑟 : public prog

skip

Γ ⊢ 𝑠𝑘𝑖𝑝 : public prog

seq

Γ ⊢ 𝑝1 : ℓ′ 𝑝𝑟𝑜𝑔 Γ ⊢ 𝑝2 : ℓ′′ 𝑝𝑟𝑜𝑔 ℓ = ℓ′ ⊔ ℓ′′

Γ ⊢ 𝑝1;𝑝2 : ℓ 𝑝𝑟𝑜𝑔

bop

Γ ⊢ 𝑟1 : public Γ ⊢ 𝑟2 : public
Γ ⊢ 𝑏𝑜𝑝 𝑟1 𝑟2 : public prog

cmov

Γ ⊢ 𝑟1 : public
Γ ⊢ 𝑟2 : public Γ ⊢ 𝑟3 : public Γ ⊢ 𝑟4 : public

Γ ⊢ 𝑖 𝑓 𝑟1 : 𝑟2 ← 𝑟3 𝑒𝑙𝑠𝑒 𝑟2 ← 𝑟4 : public prog

Figure 5: A high-level security type system for the secure SE
language.

Next, we define an equivalency of states of the system and, specif-

ically, low-equivalency following the convention in the literature

[37, 73, 92].

Definition 4.1 (Low-equivalent). First, on the finite length bits 𝑏

and [𝑏], we define the equivalence class generated by the rules
3
,

eqiv-br

𝑏, 𝑏′ ∈ 𝑏𝑖𝑡𝑠
[𝑏] ≈ [𝑏′]

eqiv

𝑏,𝑏′ ∈ 𝑏𝑖𝑡𝑠 𝑏 = 𝑏′

𝑏 ≈ 𝑏′

Now we can define low-equivalence. In context Γ, states 𝜎, 𝜎′ are
low equivalent 𝜎 ≈𝑙 𝜎′ if they are equivalent on all low locations,

Γ ⊢ 𝜎 (𝑟) ≈ 𝜎′ (𝑟) for all 𝑟 where Γ(𝑟) ≤ 𝑙

2
It is not always the case that functions with public inputs will output public outputs.
These typing rules for CMOV and BOP are sound because the security features of the

semantics ensures the output is encrypted with fresh salt.

3
This equivalence class is justified by the fact that the ciphertexts have a uniform

distribution. Thus to the attacker, any two ciphertext carry the same information and

the attacker shouldn’t have a reasonable preference between any two ciphertexts.

We can now restrict the behavior of 𝑡 using the definition above.

We require that 𝑡 decides the amount of time taken by the instruc-

tion only using public data,

if Γ ⊢ 𝜎 ≈𝑙 𝜎′ then 𝑡 (𝜎) = 𝑡 (𝜎′) (1)

Intuitively, this means the timing function 𝑡 is influenced only by

the location of level 𝑙 or lower (i.e., there is no timing dependency

between the private data and the public data that could lead to

timing side channels). This corresponds to the instruction timing
property in § 4.2.3.

We just need one preliminary security lemma toward the main

theorem now. For a well-typed program 𝑐 , taking one step in the

small-step semantics on two different states of the system that agree

on publicly visible state locations will always produce states that

continue to agree on publicly visible state locations. Moreover, the

timing behavior of 𝑡 will also be equivalent on the two final states.

This means changing any private locations in the state will not

have an observable change on the publicly observable locations

of the output states or the timing behavior of the program. The

attacker that can observe only public locations (thus not inside of

SE) cannot tell the difference between two executions of a program

where the private data might be different and thus cannot derive

additional knowledge about the secret user data from the public

data. This property corresponds to §4.1.1. Lemma 4.1 states this

property formally now.

Lemma 4.1 (Single Step Security). If

(1) Γ ⊢ 𝑐 : ℓ
(2) Γ ⊢ 𝜎1 ≈𝑙 𝜎2
(3) ⟨𝑐, 𝜎1⟩

𝑡 (𝜎1)−−−−→ ⟨c′1, 𝜎
′
1
⟩

(4) ⟨𝑐, 𝜎2⟩
𝑡 (𝜎2)−−−−→ ⟨c′2, 𝜎

′
2
⟩

(5) 𝑑𝑜𝑚(Γ) = 𝑑𝑜𝑚(𝜎1) = 𝑑𝑜𝑚(𝜎2)
then we have Γ ⊢ 𝜎′

1
≈𝑙 𝜎′2 and 𝑡 (𝜎1) = 𝑡 (𝜎2)

Proof Sketch. By induction on structure of the derivation of

⟨𝑐, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨c′1, 𝜎

′
1
⟩. The timing requirement is immediate from

assumption (2) and Eq. 1. See Appendix B for the full proof. □

The security result can now be stated via the soundness of the

type system. The soundness argument of Theorem 4.2 follows from

Lemma 4.1 for the most part by generalizing the number of steps

to an arbitrary number (e.g., multiple steps until the program is

equivalent to skip).

Theorem 4.2 (Soundness). If

(1) Γ ⊢ 𝑐 : ℓ
(2) Γ ⊢ 𝜎1 ≈𝑙 𝜎2
(3) ⟨𝑐, 𝜎1⟩

𝑛−→∗ ⟨skip, 𝜎′
1
⟩

(4) ⟨𝑐, 𝜎2⟩
𝑚−−→∗ ⟨skip, 𝜎′

2
⟩

(5) 𝑑𝑜𝑚(Γ) = 𝑑𝑜𝑚(𝜎1) = 𝑑𝑜𝑚(𝜎2)
then we have Γ ⊢ 𝜎′

1
≈𝑙 𝜎′2 and 𝑛 =𝑚.

Proof Sketch. By induction on the number of steps. Both the

base case and inductive case are consequences of Lemma 4.1. The

timing property follows from the induction as well. See Appendix

B for details. □

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

The type system and its soundness formalize the properties

discussed in §4 except §4.2.1 (Instruction stream) and §4.2.2 (Address

Stream). §4.2.1 and §4.2.2 refer to insecure instructions that can

access all 𝑟 where Γ ⊢ 𝑟 : public but cannot decrypt ciphertexts since
keyReg is private. An insecure instruction can at most corrupt

ciphertexts but when executed on two low-equivalent states must

produce a pair of low-equivalent states as well. Any timing variation

in these instructions is not correlated to private data since the

behavior of 𝑡 is restricted by low-equivalence. In the following

section, we summarize the requirements the ISA places on the

RTL-level to provide the security properties of Theorem 4.2.

4.4 Summary of Proof Obligations Discharged
to RTL Verification

To achieve the above program-level properties, we expect the RTL

implementation to satisfy some requirements about individual se-

cure SE instructions. Note that we have no requirements for in-

secure instructions. We enumerate these requirements here and

later show how the RTL-level verification formally guarantees these

instruction-level properties. The properties are split into instruction-

level properties which are properties that must be satisfied by each

instruction, and a system-level property which is a more general

requirement on the system.

In Table 2, property (P1) summarizes §4.1.2 and is required by all

the direct and indirect disclosure arguments in 4.1 and 4.2 respec-

tively. Both (P1.1) and (P1.2) are formalized in §4.3 and Appendix

A. Property (P2) is required by 4.2.3 and Eq. 1 formally states this

requirement. Finally, the system-level property (P3) is required by

all the disclosure arguments since each assumes there is no way

to get a plaintext from a ciphertext using the SE Enclave’s key ex-

cept within the small SE Enclave. The formal semantics in Figure 4

and the concluding remarks regarding insecure commands in §4.3

require it as well.

Instruction-Level Property

P1

Strong P1.1 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 is a strong keyed PRP; 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 is its inverse

ciphertext P1.2 The value 𝑢 has length 𝑠 and is sampled from a uniform dist.

P2 Instructions have no secret dependent time variation

System-Level Property

P3 Re-encrypt all data for output. No decrypt operation outside SE Enclave

Table 2: Properties assumed at the ISA level and discharged
to the RTL verification.

5 RTL SECURITY PROPERTIES
In this section, we formally define the security properties in an

RTL implementation of SE so as to support the instruction-level

requirements from § 4. We employ standard hardware information
flow tracking (IFT) to check RTL-level properties. Briefly, if secret

variables (plaintext and crypto key) do not leak to outputs of the

Enclave, then the attacker is not able to infer secret values based

on any observation and thus security is guaranteed.

For the rest of this section, wewill first discuss the security goal at

the RTL level, clarify the connection between ISA-level assumptions

and RTL-level properties, then provide a formal definition for the

hardware information flow properties to be checked for the RTL

design.

5.1 RTL-Level Security Goal
We assume that the attacker can observe and control any signal,

register, and memory location outside the boundary of SE Enclave

(including the Enclave’s outputs), but they cannot observe and

manipulate signals and states within SE Enclave. SE Enclave is

connected with the rest of the system with a well-defined IO inter-

face. Such an assumption keeps the footprint of trusted RTL design

minimal.

Our RTL-level security goal is to prevent secret variables inside

the Enclave from leaking to the outputs of the Enclave in two forms:

functional leakage and timing leakage. Functional leakage happens

if the attacker can directly infer secret information from the result

of the SE Instruction. Timing leakage happens if the execution time

of some instruction depends on the secret and the attacker may

infer secret information by measuring the execution time.

ISA-Level Requirement RTL-Level Property

P1 Functional Correctness of Crypto and RNG

P2 No Timing Leakage at the SE Enclave Outputs

P3 No Functional Leakage at the SE Enclave Outputs

Table 3: Mapping between ISA-Level Requirement and RTL-
Level Properties.

5.2 ISA-RTL Property Mapping
Table 3 provides the connection between requirements from the

ISA-level and the properties to be checked at the RTL-level.

P1: The implementation is required to satisfy the requirements of

the scheme SE defined in §4.3 without the restriction of the seman-

tics on the number of calls the attacker makes. Thus, the implemen-

tation supports the strictly stronger attacker of the CCA-security

game in Appendix A. Two specific requirements are discharged on

the cryptographic algorithms: the use of a strong pseudorandom

permutation and availability of a truly random 𝑠-bit generator. For

example, the RTL may implement AES-128 which is a block-cipher

(thus 𝑠 = 64, 𝑛 = 64), and block-ciphers are an implementation of

strong pseudorandom permutation [56, Ch. 3.6.4]. Other implemen-

tation options, such as RSA, come from the closely related family

of trapdoor permutations and satify this requirement as well. The

values 𝑢, which is defined in §4.3, is generated by a hardware-based

TRNG as shown in Figure 2. As discussed in §3.3, we assume the ex-

istence of high-bandwidth and bias-free TRNGs and consider their

design out of scope for this work. The quality of the random number

generator can be checked using existing tools, e.g., Dieharder [22].
Similarly, the functional correctness of the encryption and decryp-

tion units can be checked by existing techniques [59] and is not

discussed in this paper.

P2: Any secret-dependent execution time will result in timing leak-

age, i.e., secret dependent variation in the timing at which results

are available at the SE Enclave outputs. Thus, we need to check

there is no timing leakage at the SE Enclave outputs in the RTL.

P3: Any unencrypted secret at the data output would result in

a functional leakage of the instruction result at the SE Enclave

outputs. Thus, we need check there is no functional leakage at the

SE Enclave outputs in the RTL. Further, without any information

(functional or timing) about the encryption key (which is only in

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

the SE Enclave), it is impossible to decrypt the ciphertext outside

of the Enclave.

The notion of ‘leakage’ can be formalized using standard hard-

ware IFT, which we will define for the SE Enclave and discuss in

the following subsections.

5.3 SE Definition
We use the following finite state machine (FSM) to represent an SE

Enclave: 𝑆𝐸 = (𝐼 ,𝑂, 𝑆, 𝑆0, 𝑁 , 𝐹), where:
• 𝐼 is a vector of input variables and the domain of 𝐼 is I.
• 𝑂 is a vector of output variables. The domain of 𝑂 is O.
• 𝑆 is a vector of state variables and the domain of 𝑆 is S.
• 𝑆0 is the initial value for 𝑆 .

• 𝑁 : (S × I) → S is the next state function for 𝑆 .

• 𝐹 : (S × I) → O is the output function.

The secrets, i.e., plaintext output 𝑝 of decryption and the secret

key 𝑘 are also state variables in 𝑆 . 𝑆 also includes the random salt 𝑟

used as input to the encryption unit.

To describe the execution of the SE Enclave, we introduce the no-

tion of a finite-length execution trace: Π = (𝜋𝐼 , 𝜋𝑂 , 𝜋𝑆) represents
an execution for 𝑛 cycles where 𝜋𝐼 = (𝐼0, 𝐼1, 𝐼2, ...𝐼𝑛−1) is a trace of
input values for each cycle, 𝜋𝑂 = (𝑂0,𝑂1,𝑂2, ...𝑂𝑛−1) is a trace of
output values for each cycle, 𝜋𝑆 = (𝑆0, 𝑆1, 𝑠2, ...𝑆𝑛−1) is a trace of
state variable values from each cycle. The elements in 𝜋𝐼 , 𝜋𝑂 , 𝜋𝑆
follow the next state function 𝑁 and the output function 𝐹 . In the

following parts of the paper, we may use 𝜋𝑥 = (𝑥0, 𝑥1, 𝑥2, ...𝑥𝑛−1)
to denote the trace of a variable 𝑥 which consists of the value of

𝑥 at every cycle in the execution, and 𝜋𝑌 = (𝑌0, 𝑌1, 𝑌2, ...𝑌𝑛−1) to
denote the trace of a vector 𝑌 which consists of the value of 𝑌 at

every cycle in the execution.

Next, we define information flow using execution traces.

5.4 Classic Information Flow Definition
The classic information flow definition is based on the well-known

‘non-interference’ property [25, 40]. The key idea of this property

is: if a variable 𝑥 never interferes with another variable 𝑦 in the

system, then replacing 𝑥 with different values will never affect the

value of 𝑦. Let 𝑠 be a secret variable and 𝑜 be an output variable.

In our setting, if there is no information flow from 𝑠 to 𝑜 , then the

value of 𝑜 is independent of the value of 𝑠 , thus it is impossible to

infer 𝑠 based on 𝑜 .

𝑠 not influencing 𝑜 means the value of 𝑜 at every cycle is not

changed when the value of 𝑠 is replaced with an arbitrary value. Let

Π be an execution trace of length 𝑛, 𝑄 be the vector state variables

besides 𝑠 , 𝜋𝑠 denote the trace of 𝑠 , 𝜋𝑄 denote the trace of 𝑄 , 𝜋𝑜
denote the trace of 𝑜 , 𝐹𝑜 denote the output function for 𝑜 ,𝑁𝑄 denote

the next state function for 𝑄 . If in Π we replace 𝜋𝑠 with a different

trace 𝜋 ′𝑠 (it differs from 𝜋𝑠 in at least one cycle), then we can use 𝜋 ′𝑠
to compute the new trace of 𝑄,𝑜 , i.e., 𝜋 ′

𝑄
and 𝜋 ′𝑜 as follows:

𝑄 ′
0
= 𝑄0, 𝑄

′
𝑖 = 𝑁𝑄 (𝐼𝑖−1, 𝑄′𝑖−1, 𝑠

′
𝑖−1), 1 ≤ 𝑖 < 𝑛

𝑜′𝑖 = 𝐹𝑜 (𝐼𝑖 , 𝑄′𝑖 , 𝑠
′
𝑖), 0 ≤ 𝑖 < 𝑛

There exists information flow from 𝑠 to 𝑜 if and only if

∃Π, ∃𝜋 ′𝑠

such that after computing 𝜋 ′
𝑄
, 𝜋 ′𝑜 ,

𝜋𝑜 ≠ 𝜋 ′𝑜

(𝜋𝑜 , 𝜋
′
𝑜 differ in at least one cycle)

However, we need to modify this classic information flow def-

inition to analyze a design with encryption. In the threat model,

we assume that the ciphertext after encryption will not leak any

information about the plaintext. However, changing the plaintext

will necessarily change the ciphertext regardless of the encryption

scheme. Therefore, we would reach the conclusion that there is in-

formation flow from the plaintext to the ciphertext, but this would

be a false alert. We describe our solution to this issue in the follow-

ing subsection by using the notion of ‘ciphertext declassification.’

5.5 Information Flow with Ciphertext
Declassification

The idea of declassification [9, 84] allows information flow under

a specific condition. This allows information flow to go through

a certain variable such as the ciphertext output of the encryption

unit under the condition that the encryption is finished. The similar

idea is also applied in our ISA-level proof.

Let 𝑠 be a secret variable, 𝑜 be an output variable, and 𝑐 be the

ciphertext output of encryption. Let 𝑝 be a predicate that represents

the completion of encryption, i.e., 𝑝 is only true when encryption is

completed. The intuitive way to realize declassification is to model

the design such that when 𝑝 is true, 𝑐 is replaced by a free variable

𝑐 𝑓 . This cuts off the connection between 𝑠 and 𝑐 when 𝑝 is true and

blocks the information flow under this condition, but not otherwise.

Next, we will give a formal description of the above method. We

construct a new FSM 𝑆𝐸′ from FSM 𝑆𝐸 as follows. (i) We add a

free variable 𝑐 𝑓 to the input vector 𝐼 . (ii) For the output function

𝐹 and next state function 𝑁 , replace all occurrences of 𝑐 in their

arguments using the following expression 𝑝 ? 𝑐 𝑓 : 𝑐 .

Denote the new input vector as 𝐼 ′, the new output function as 𝐹 ′,
and the new next state function as 𝑁 ′. The only difference between
FSM 𝑆𝐸′ and FSM 𝑆𝐸 is that in 𝑆𝐸′, 𝑐 is replaced by 𝑐 𝑓 when 𝑝 is true.

Then, in the original FSM 𝑆𝐸 there exists information flow from 𝑠

to 𝑜 not going through 𝑐 when 𝑝 holds if and only if there exists

information flow from 𝑠 to 𝑜 in 𝑆𝐸′. We call the above technique

‘ciphertext declassification information flow’.

5.6 Summary
Based on our threat model we want to check if there exists informa-

tion flow from the secrets to the Enclave outputs not going through

the ciphertext after encryption. We will demonstrate in § 6.2 how

both functional and timing leakage can be captured using standard

hardware IFT.

In the next section, we detail the SE implementations, including

three secure implementations and four insecure implementations,

then use hardware IFT to either detect leakage or prove security.

6 IMPLEMENTATION AND EVALUATION
To evaluate the effectiveness and performance of our RTL verifica-

tion technique, we implemented a collection of SE Enclave designs

with different microarchitectural optimizations or security flaws.

The goal of the evaluation is to check if our verification technique

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Inst. Description Inst. Description

Class: Shift Class: Arithmetic

SLL Logic Left Shift ADD Add

SLA Arith. Left Shift SUB Subtract

SRA Arith. Right Shift MULT Multipliy

Class: Logical MULTS Signed Multiply

XOR Logical XOr Class: Comparison

OR Logical Or LT Less Than

AND Logical And LTS Signed Less Than

Class: Encryption Class: Conditional

ENC Encrypt CMOV Conditional Move

Table 4: Instructions Implemented in SE Prototype.

is sufficient to support common microarchitectural design optimiza-

tions and catch security flaws when they are present. In this section,

we first describe the designs we implemented as the verification

targets and then explain our verification process on each of those

design options, followed by experiment results.

6.1 SE RTL Enclave Design Details
In this subsection, we describe the details of the SE Enclave RTL

designs and the flawed SE Enclave designs we used to validate our

verification technique. Overall, we implemented seven different de-

signs. Three of the designs are safe and valid designs including one

default design, one area optimized design, and one design with our

advanced decryption cache optimization. We also implemented four

designs with different types of vulnerabilities in them to validate

our verification technique.

6.1.1 Implemented Instructions. All our prototype designs imple-

mented 14 instructions in total as listed in Table 4. These 14 instruc-

tions fall in categories shown in Table 1. Instructions in class Shift,
Arithmetic, Logical, and Comparison all take two 128-bit encrypted

operands as inputs and generate one 128-bit encrypted output with

a fresh salt value. ENC instruction takes one 64-bit plaintext input

and generates a 128-bit output in its encrypted form. This instruc-

tion is to support adding a public plaintext value to an encrypted

secret value. To do so, the developer first encrypts the public value

with a fresh 64-bit salt and then carries out the operation with

the corresponding instruction. CMOV is the only ternary instruction

supported by SE Enclave. This instruction takes three operands as

input: condition, t_value, and f_value. The output result is based
on the value of the condition: t_value if the condition is true and

f_value otherwise. For each of the designs described below, there

are two outputs: Valid and Data. Valid is effectively a completion

signal that indicates whether the value at Data is the valid result

for the most recent instruction.

6.1.2 Default SE Enclave Design (Default). A simplified representa-

tion of the default design is shown in Figure 2. In this design, SE

Enclave takes in three operands, an instruction, and a valid bit to sig-

nal the start of computation. On the output side, SE Enclave outputs

a 128-bit always encrypted value with a valid bit signaling the end

of the computation. We use a 10-round unrolled AES encryption

and decryption unit. The key is stored in the key register within

the SE Enclave. The ALU unit is a constant time unit that performs

the computation on already decrypted plaintext values. For the pur-

pose of evaluation, we used a Linear Shift Feedback Register(LSFR)

with a random seed as our random number generator(RNG), which

yields a 64-bit random number per cycle. Any random number

generator that can generate 64 or more random bits per cycle can

be a valid design candidate. The choice and implementation of an

RNG are outside the scope of this paper.

The default design can be fully pipelined. The input ciphertext

is fed into the decryption unit first. After decryption, the 64-bit

plaintext value goes through the ALU for computation. The com-

pleted result is padded with a newly generated 64-bit salt from RNG

before being sent to the encryption unit.

A
E
S

A
E
S

.

.

.

A
E
S

Output
Ciphertext

Input
Plaintext

A
E
S

Output
Ciphertext

Input
Plaintext

(a)

128 128 128

Counter

Result
Buffer

1280

Counter < 10?
Counter = 0?

(b)

0

1
0

1

Figure 6: Unrolled AES (a) vs. Rolled AES (b)

6.1.3 Optimized Architecture. We introduced two design variants

of SE Enclave enabled by common optimizations: one optimized

for area and the other optimized for performance.

Design with Rolled-Crypto Unit (Rolled AES): One optimization

is to roll crypto units and thus make the SE Enclave an area-

optimized architecture. The rolled AES uses a single shared register

for each round and stores the intermediate results in the register

after the completion of each round. The rolled architecture cannot

be pipelined as it has only one register to hold intermediate AES

encryption/decryption results after each round, thus the upstream

data would need to be blocked until the completion of the full

10 rounds of AES encryption and decryption. Figure 6 shows the

comparison between unrolled and rolled AES encryption.

Note that it is important for a rolled AES to prevent partially

encrypted ciphertext from flowing outside of the encryptionmodule

because only fully encrypted ciphertext is considered secure.

Cache-enabled SE Design (Cache): Another optimization we im-

plemented is to include a decryption cache as shown in Figure 7.

One observation we have is that many applications demonstrate

temporal locality — a recently computed result is more likely to

be used as input operands in subsequent instructions. To exploit

this type of locality, we cache the plaintext and the corresponding

ciphertext for each result in the decryption cache as a First-in, First-

out (FIFO) buffer. For each input operand, SE Enclave first looks

up the input in the decryption cache and skips decryption if all

operands are hit in the cache. We will show this type of design does

not introduce side channels in the sections below.

6.1.4 Vulnerable Designs. To validate the effectiveness of our veri-

fication technique, we also implemented four microarchitectural

vulnerabilities in various parts of the system that can leak informa-

tion through side channels.

Exposed Partially Encrypted Ciphertext (Vulnerable Rolled AES):
For the design with the rolled-crypto unit, a designer might be

tempted to connect the output of the crypto unit directly to the

register that holds the partial results of the AES encryption, and thus

expose the partial encryption results to an attacker who can snoop

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

Source
Ciphertext(s)

Decryption
Cache

Tag
Hit?

Data-Out

A
LU

Decryptor

64

64128

128

128

Update
Decrpytion

Cache

128

Data
(Resultant
Ciphertext)

Control
Signals

Update

Valid
Encryptor

Figure 7: SE Enclave Design with Decryption Cache

that output. When not properly encrypted with a sufficient number

of rounds, the partially encrypted ciphertext can be easily recovered

through crypto-analysis [12]. This vulnerable design connects the

output directly to the crypto result register to emulate a common

mistake that might happen in the hardware design process. Thus,

this causes a functional leakage from the SE Enclave.

Value-dependent Timing Multiplier (Vulnerable Multiplier): The
second vulnerability we introduced is a shift-and-add multiplier

(sample code listed in Appendix D.1), which causes a timing leakage.

When one of the input operands is 0, the ALU in SE Enclave can

immediately output 0 as the result of a multiplication operation;

otherwise, the shift-and-add multiplication takes multiple cycles

(operand dependent) to complete the computation. If the attacker

measures the execution time of the MULT instruction for different

encrypted operands, those finishing in fewest cycles indicate that

one of the operands is likely to be 0, resulting in a timing leakage.

Value-dependent Cache Replacement(Vulnerable Cache): The third
vulnerability we introduced is a value-dependent cache replace-

ment policy, which leads to timing leakage. In this design, the cache

is partitioned into two smaller caches, as shown in Figure 8. While

still following FIFO, which cache the result would be placed in is de-

pendent on the sign of the plaintext value. An attacker can conduct

a known-plaintext attack [1, 55], similar to Prime-and-Probe [66],

to first place a piece of data into one of the cache partitions. Then,

the attacker replays the victim’s instruction until the results would

fill up one of the cache partitions. After that, the attacker probes

the cache with the data they previously placed in the cache. By

measuring the execution time of instructions to determine whether

it is a hit or miss, the attacker can successfully recover the sign bit

of victim data and even recover the full secret with enough trials

through binary search as detailed in Appendix C, which is similar

to the approach used in other attacks, such as Blind ROP [18].

Value-dependent Timing RSA (Vulnerable RSA): Our last flawed
design is a flawed RSA crypto engine (sample code listed in Appen-

dix D.2). In RSA, to decrypt a piece of data, SE Enclave computes

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑁 where 𝑚 is the decrypted message, 𝑐 is the ci-

phertext, 𝑑 is decryption key, and 𝑁 is the modulus. To compute

modular exponentiation effectively, the modular exponentiation

module would compute bit by bit for the decryption key until it hits

the most significant ‘1’ in the key. This introduces a timing leakage

because the decryption time depends on a secret (the private key)

and the attacker can measure the execution time of instructions

to gain information about the length of the key and potentially

recover the whole key [97].

Source
Ciphertext(s)

Negative
Decryption

CacheIndex

Tag
Hit?

Data-Out

Positive
Decryption

Cache
Tag

Hit?
Data-Out

A
LU

Decryptor

64

64

64128

128

128

128

Update
Decrpytion

Cache

128

Data
(Resultant
Ciphertext)

Control
Signals

Valid

Encryptor

Figure 8: Flawed SE Enclave Design with Partitioned Decryp-
tion Cache

6.2 Evaluation Overview
6.2.1 Checking RTL Properties Using IFT. We check the RTL prop-

erties stated in Table 3 using standard IFT. The secret variables (the

source in IFT) are i) the plaintext after decryption and ii) the crypto
key in the key register. The destination variables for the IFT are the

two outputs of the SE Enclave, Valid and Data. Information flow

to Valid indicates timing leakage as when Valid goes high, i.e., the
completion signal, depends on a secret. Information flow to Data
indicates dependence of Data on the secret. This dependence may

indicate functional leakage, i.e., the secret may be inferred from

the value of Data or timing leakage depending on the sequence of

values at Data. For example, Data may stay at a value of 0 till it

has a valid value, and switch to this valid value when it is ready.

This distinction between functional leakage and timing leakage at

Data is made by design analysis or using techniques from previous

works [7, 74]. To distinguish this from the timing leakage observed

at Valid, we refer to timing leakage at Data as functional-timing

leakage.

6.2.2 Hardware Information Flow Tracking Tool. We can use any

available IFT tool [8, 23, 48, 87, 91] to check for information flow.

In this work, we use Cadence JasperGold Security Path Verification

(SPV) tool [23, 48] for its availability in both industry and academia

(through a university license). The tool will either prove that there

is no information flow from the sources (the decrypted plaintext

and key register) to the destination (the SE Enclave outputs) or

find a hardware trace that demonstrates the information flow using

symbolic model checking, i.e., over all possible inputs.

6.2.3 Conditional Ciphertext Declassification. In our setting we

need to check information flowwith ciphertext declassification. SPV

could potentially check this using blackboxing and the not-through
switch (in previous SPV versions). SPV also allows specifying pred-

icates on the source and destination under which information flow

is allowed. However, in our setting we need to check information

flow with conditional ciphertext declassification using predicates on

intermediate signals, rather than with the source/destination (e.g.,
only declassify the ciphertext when the encryption is finished). We

accomplish this with a simple modification of the RTL design as

described in § 5. Note that we need to treat unrolled encryption and

rolled encryption differently. For unrolled encryption, because of

its pipeline structure, we can directly replace the ciphertext output

of the last crypto unit in the pipeline with a free input 𝑐 𝑓 because

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

the output of the last crypto unit is always completely encrypted

which means the completion predicate 𝑝 is always true. For rolled

encryption, since there is only one crypto unit, we only replace

its output with a free input when the counter indicates that it is

the last round. Thus, for a 10-round encryption, the completion

predicate 𝑝 is 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 == 10.

6.2.4 Cache Initialization. When evaluating SE variantswith caching,

we initialize the cache to be in an arbitrary state, i.e., any cache line
can be valid or invalid. Since JasperGold conducts symbolic model

checking, all possible initial states will be explored, thus ensuring

full coverage. This helps catch vulnerabilities in amuch shorter time

because some vulnerabilities only leak information when the cache

is full. If we initialize the cache to be empty, the formal tool needs to

conduct an extremely long symbolic execution, which significantly

increases the verification time. If we initialize the cache to be full,

although we may catch the vulnerability leaking information with

the full cache faster, the tool cannot cover the entire search space

because there is no instruction to flush the cache in the SE Enclave.

However, we will fail to capture vulnerabilities that only leak infor-

mation when the cache is not full. Therefore, initializing the cache

to be in an arbitrary state can avoid the above two drawbacks. As

the experiments demonstrate, the formal tool can prove security

with full coverage, and also capture vulnerabilities efficiently.

In the following subsection, we will evaluate implementations

of the SE Enclave and its variants, along with several buggy imple-

mentations using the JasperGold SPV tool.

Setup

Processor: two Intel Xeon 5222 cores

Memory: 256 GB

Tool: Cadence JasperGold 2021

SE Variant register bits result leakage time memory
Default 6544 secure - 0.1s 1.6GB

Rolled AES 1412 secure - 0.1s 0.7GB

Cache 12784 secure - 0.1s 1.6GB

Vulnerable

1412 insecure

functional

109.4s 2.5GB

Rolled AES (plaintext→ Data, key→ Data)

Vulnerable

6737 insecure

timing

63.3s 4.7GB

Multiplier (plaintext→ Valid)

Vulnerable

12752 insecure

timing

402.4s 14.7GB

Cache (plaintext→ Valid)

Vulnerable

4328 insecure

timing, functional-timing

0.1s 0.3GB

RSA (key→ Valid, key→ Data)

Table 5: Experimental Evaluation

6.3 Experimental Results
The experimental results are provided in Table 5. For every SE de-

sign variant, we show the number of register bits as an indicator

of the size of the state space. In addition to the verification result,

i.e., secure or insecure, we also label every insecure design with the

leakage type, along with the source and sink of the information flow

captured. The Vulnerable Rolled AES implementation has func-

tional leakage where both plaintext secrets and the encryption key

are leaked to Data. The Vulnerable Multiplier and Vulnerable
Cache have timing leakage where the plaintext secrets are leaked to

Valid. For Vulnerable RSA, there exists information flow to both

Data and Valid. The leakage through Valid is timing leakage, but

there is also timing leakage through Data as it is also leaking in-

formation about execution time as follows. The RSA crypto engine

can only be implemented as a non-pipeline structure (the number

of rounds is variable and depends on the decryption key). Thus,

similar to rolled AES encryption, its output needs to be blocked

when the encryption is ongoing. This means that when the cipher-

text is not ready, it will output some default value such as all 0 to
the Data. The attacker can infer the decryption key by measuring

the number of 0s between two non-zero ciphertext outputs which

is timing leakage. As discussed in § 6.2, we distinguish between

the timing leakage to Valid and Data by referring to the latter as

functional-timing leakage.

In a pipelined AES encryption in the default SE Enclave design,

the crypto engine outputs a fully encrypted ciphertext every cycle,

thus only Valid carries timing information and this attack does

not work. This explains why there is no information flow to Data
for Vulnerable Multiplier and Vulnerable Cache.

As shown in Table 5, it takes less time and memory to prove

no information leakage for secure implementations than to detect

information leakage for the vulnerable ones. In secure designs, since

the path from secrets to both outputs is cut off after declassification,

SPV only needs to do a simple structural path check to prove the

security. In comparison, SPV needs to do a state space search in

order to detect information leakage in a vulnerable design. The time

and memory usage are also affected by the number of register bits

and the complexity of the design. Across all implementations, the

maximum verification time is less than 7 minutes. The experimental

results demonstrate that our evaluation scheme is able to prove

security or catch leakage precisely and efficiently.

6.4 Summary
In this section, we evaluated different SE Enclave variants using

information flow checking. In general, our information flow defi-

nition and evaluation methodology work on any low-trust archi-

tecture with encryption. This is because low-trust architectures

limit trust to only a small hardware enclave which facilitates for-

mal verification, and the conditional ciphertext declassification we

implemented can correctly deal with the information flow going

through encryption.

7 RELATEDWORK
7.1 Secure Hardware Architectures
There have been numerous works in designing secure architectures

as microarchitectural flaws (and lack of security awareness at the

architecture level) continue to be exploited by software attacks.

Trusted Execution Environments (TEEs) [5, 6, 20, 24, 26, 27, 38,

62, 71, 78, 85, 88, 89] have been widely deployed by mainstream

hardware vendors in their server-grade CPUs to provide execution

integrity and data confidentiality. Although the root of trust is also

in hardware, TEEs such as Intel SGX [26] and Keystone [62] have a

significantly different threat model as they do not eliminate timing

side channels. Sanctum [27], MI6 [20], and Ascend [38, 78] aim to

eliminate timing side channels, but they have much larger trusted

computing bases than SE, making them hard to be formally verified.

Multiple works have been developed to mitigate leakage of data

through timing side channels during speculative execution. Hy-

perflow [37] enforces data security properties by static flow anal-

ysis at the hardware construction time. It relies on a trusted label

manager to assign correct labels to data. OISA [101] presents a

timing-channel free ISA extension that uses tags to distinguish

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

Public and Confidential data. It verifies both ISA and microarchi-

tectural implementation through an abstract machine. Specula-

tive Taint Tracking (STT) [103] and Speculative Data-Oblivious

Execution (SDO) [102] are consecutive works that use runtime

speculative taint analysis to eliminate timing side channels for

safe speculative execution by delaying transient execution on the

backend. DOLMA [68] introduces the principle of transient non-

observability and delays executions that are reliant on speculative

memory micro-ops. Software-hardware contract [44] formalizes

software security requirements and hardware capabilities to ensure

confidentiality for benign programs.

In comparison, we present the ISA and RTL level verification

of a low-trust architecture that cannot leak secrets for any (even

malicious) program, which is absent in the aforementioned works.

7.2 Functional Leakage and Timing Leakage
In this work, we use the role of signals to differentiate between

functional leakage and timing leakage, i.e., using hardware infor-
mation flow tracking at Data for functional leakage and at Valid
for timing leakage. This idea was discussed in a previous work [54].

Aside from using the role of signals, previous works also tried to

use the observation of a signal in consecutive cycles (sequence) to

differentiate between functional and timing leakage [7, 74]. Such

techniques require more complex hardware information flow track-

ing logic and can separate timing leakage and functional leakage

without needing to know the role of signals. However, since our

work is interested in capturing both types of leakage, we choose to

use the simpler role-based classification.

7.3 Hardware Security Evaluation Schemes
7.3.1 Type-Based Hardware Security Evaluation. SecVerilog [104]
and its variants [35, 36] introduce new hardware design languages

that allow developers to attach different security levels to hardware

variables while programming, and also to define the rules for in-

formation flowing between different security levels. To declassify,

these languages provide ’downgrading’ syntax in the language to

permit specific information flows. Static type checking is conducted

to formally verify that the security policy is followed by the design.

While it is computationally faster, verification based on static

type checking is not as precise as verification based on symbolic

checking as in our work [57]. Static type checking may easily pro-

duce false positives due to its conservative nature. Further, it is

inconvenient and error-prone for users to use a new language

along with security labels in developing hardware.

7.3.2 Other Evaluation Schemes Based on Information Flow. De-
pending on threat models, different security properties have been

proposed and verified. These properties are based on the basic infor-

mation flow property and add different conditions and constraints

according to the threat model. Attempts have been made to detect

timing leakage with taint propagation [39, 74] by verifying prop-

erties such as ‘constant-time execution’. Works based on Unique

Program Execution Checking [33, 34] are aimed at checking infor-

mation leakage through out-of-order execution, where information

flow caused by in-order execution is ruled out by constraints.

A key advantage of our work is that we are able to verify security

properties at the instruction level for all programs while other

works do not provide the same guarantees.

8 CONCLUSIONS
This work demonstrates how the security of all programs running

on low-trust architectures can be ensured by clearly defining the

security requirements of their ISA instructions, formally specifying

the consequent proof obligations for RTL implementations, and

then executing these proof obligations using RTL formal verifi-

cation tools. Further, it shows how these proof obligations cover

functional as well as timing side-channel leakage. Finally, the small

footprint of the trusted part of the implementation enables com-

pleting the formal checks using existing state-of-the-art formal

verification tools - something that is currently not possible for

non-low-trust architectures. We demonstrate our approach using

the SE architecture where the ISA and the program-level proof

are handwritten and the RTL-level verification done using off-the-

shelf formal tools. Our experiments using seven different design

variants shows that our approach is effective in proving the se-

curity of correct implementations and detecting flaws in buggy

implementations.

REFERENCES
[1] [n. d.]. Known-plaintext Attack https://en.wikipedia.org/wiki/Known-

plaintext_attack. ([n. d.]).

[2] Tommaso Addabbo, Ada Fort, Santina Rocchi, and Valerio Vignoli. 2009. Chaos
Based Generation of True Random Bits. Springer Berlin Heidelberg, Berlin,

Heidelberg, 355–377. https://doi.org/10.1007/978-3-540-95972-4_17

[3] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-

manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago

Zanella-Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy:

How Diffie-Hellman Fails in Practice. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (Denver, Colorado, USA)

(CCS ’15). Association for Computing Machinery, New York, NY, USA, 5–17.

https://doi.org/10.1145/2810103.2813707

[4] Monjur Alam, Haider Adnan Khan, Moumita Dey, Nishith Sinha, Robert Callan,

Alenka Zajic, and Milos Prvulovic. 2018. One&Done: A Single-Decryption EM-

BasedAttack onOpenSSL’s Constant-Time Blinded RSA. In 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 585–602.

https://www.usenix.org/conference/usenixsecurity18/presentation/alam

[5] Tiago Alves. 2004. Trustzone: Integrated Hardware and Software Secu-

rity https://www.techonline.com/tech-papers/trustzone-integrated-hardware-

and-software-security/. White paper (2004). https://www.techonline.com/tech-

papers/trustzone-integrated-hardware-and-software-security/

[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

Technology for CPU based Attestation and Sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

[7] Armaiti Ardeshiricham, Wei Hu, and Ryan Kastner. 2017. Clepsydra: Modeling

timing flows in hardware designs. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 147–154.

[8] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. 2017. Regis-

ter transfer level information flow tracking for provably secure hardware design.

In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 1691–1696.

[9] Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declassifi-

cation, Encryption and Key Release Policies. In 2007 IEEE Symposium on Security
and Privacy (SP’07). IEEE, 207–221.

[10] Jim Attridge. 2002. An Overview of Hardware Security Modules. SANS Institute.
Information Security Reading Room (2002).

[11] Roberto Avanzi. 2017. The QARMA Block Cipher Family. Almost MDS Matrices

Over RingsWith Zero Divisors, Nearly Symmetric Even-Mansour Constructions

With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency

S-Boxes. IACR Transactions on Symmetric Cryptology 2017, 1 (Mar. 2017), 4–44.

https://doi.org/10.13154/tosc.v2017.i1.4-44

https://en.wikipedia.org/wiki/Known-plaintext_attack
https://en.wikipedia.org/wiki/Known-plaintext_attack
https://doi.org/10.1007/978-3-540-95972-4_17
https://doi.org/10.1145/2810103.2813707
https://www.usenix.org/conference/usenixsecurity18/presentation/alam
https://www.techonline.com/tech-papers/trustzone-integrated-hardware-and-software-security/
https://www.techonline.com/tech-papers/trustzone-integrated-hardware-and-software-security/
https://www.techonline.com/tech-papers/trustzone-integrated-hardware-and-software-security/
https://www.techonline.com/tech-papers/trustzone-integrated-hardware-and-software-security/
https://doi.org/10.13154/tosc.v2017.i1.4-44

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

[12] Navid Ghaedi Bardeh and Sondre Rønjom. 2019. Practical Attacks on Reduced-

RoundAES. In Progress in Cryptology –AFRICACRYPT 2019, Johannes Buchmann,

Abderrahmane Nitaj, and Tajjeeddine Rachidi (Eds.). Springer International

Publishing, Cham, 297–310.

[13] Elaine Barker, Lily Chen, Sharon Keller, Allen Roginsky, Apostol Vassilev, and

Richard Davis. 2017. Recommendation for Pair-wise Key-Establishment Schemes
Using Discrete Logarithm Cryptography. Technical Report. National Institute of
Standards and Technology.

[14] Mathieu Baudet, David Lubicz, Julien Micolod, and André Tassiaux. 2011. On

the Security of Oscillator-Based Random Number Generators. J. Cryptol. 24, 2
(apr 2011), 398–425. https://doi.org/10.1007/s00145-010-9089-3

[15] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, François Poucheret,

Bruno Robisson, and Philippe Maurine. 2012. Contactless Electromagnetic

Active Attack on Ring Oscillator-based True Random Number Generator. In

International Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 151–166.

[16] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, BryanWeeks, Jason Smith,

and Louis Wingers. 2015. The SIMON and SPECK Lightweight Block Ciphers.

In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:

//doi.org/10.1145/2744769.2747946

[17] Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh, Fit-

sum Assamnew Andargie, and Todd Austin. 2022. Sequestered Encryption: A

Hardware Technique for Comprehensive Data Privacy. In 2022 IEEE Interna-
tional Symposium on Secure and Private Execution Environment Design (SEED).
73–84. https://doi.org/10.1109/SEED55351.2022.00014

[18] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.

2014. Hacking Blind. In 2014 IEEE Symposium on Security and Privacy. IEEE,
227–242.

[19] Matt Blaze, Joan Feigenbaum, and Angelos D Keromytis. 1998. KeyNote: Trust

Management for Public-Key Infrastructures. In International Workshop on Secu-
rity Protocols. Springer, 59–63.

[20] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and Srinivas

Devadas. 2019. Mi6: Secure Enclaves in a Speculative Out-Of-Order Proces-

sor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 42–56.

[21] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. 2007. Provably

Secure Authenticated Group Diffie-Hellman Key Exchange. ACM Transactions
on Information and System Security (TISSEC) 10, 3 (2007), 10–es.

[22] Robert G Brown. [n. d.]. Dieharder: A Random Number Test Suite. ([n. d.]).

https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[23] Cadence. 2022. JasperGold Security Path Verification. https://www.cadence.

com/en_US/home/tools/system-design-and-verification/formal-and-static-

verification/jasper-gold-verification-platform/security-path-verification-

app.html. https://www.cadence.com/en_US/home/tools/system-design-

and-verification/formal-and-static-verification/jasper-gold-verification-

platform/security-path-verification-app.html

[24] David Champagne and Ruby B Lee. 2010. Scalable Architectural Support for

Trusted Software. In HPCA-16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. IEEE, 1–12.

[25] Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157–1210.

[26] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive (2016).

[27] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal

Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16). 857–874.

[28] Christophe De Roover and Michiel Steyaert. 2010. A 500 mV 650 pW Random

Number Generator in 130 nm CMOS for a UWB Localization System. In 2010
Proceedings of ESSCIRC. 278–281. https://doi.org/10.1109/ESSCIRC.2010.5619875

[29] M. Delgado-Restituto, A. Rodriguez-Vasquez, S. Espejo, and J.L. Huertas. 1992. A

Chaotic Switched-Capacitor Circuit for 1/f Noise Generation. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications 39, 4 (1992),

325–328. https://doi.org/10.1109/81.129465

[30] M. Delgado-Restituto and A. Rodriguez-Vazquez. 2001. Mixed-signal Map-

Configurable Integrated Chaos Generator for Chaotic Communications. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 48,
12 (2001), 1462–1474. https://doi.org/10.1109/TCSI.2001.972853

[31] W. Diffie and M. Hellman. 1976. New Directions in Cryptography. IEEE Trans-
actions on Information Theory 22, 6 (1976), 644–654. https://doi.org/10.1109/

TIT.1976.1055638

[32] Michael Epstein, Laszlo Hars, Raymond Krasinski, Martin Rosner, and Hao

Zheng. 2003. Design and Implementation of a True Random Number Generator

Based on Digital Circuit Artifacts. In Cryptographic Hardware and Embedded
Systems - CHES 2003, 5th International Workshop, Cologne, Germany, September
8-10, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2779). Springer,
152–165. https://doi.org/10.1007/978-3-540-45238-6_13

[33] Mohammad Rahmani Fadiheh, Johannes Müller, Raik Brinkmann, Subhasish

Mitra, Dominik Stoffel, and Wolfgang Kunz. 2020. A Formal Approach for

Detecting Vulnerabilities to Transient Execution Attacks in Out-of-Order Pro-

cessors. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[34] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mi-

tra, and Wolfgang Kunz. 2019. Processor Hardware Security Vulnerabilities

and Their Detection by Unique Program Execution Checking. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 994–999.

[35] Andrew Ferraiuolo, Weizhe Hua, Andrew C Myers, and G Edward Suh. 2017.

Secure Information Flow Verification with Mutable Dependent Types. In 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[36] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C Myers, and G Edward

Suh. 2017. Verification of a Practical Hardware Security Architecture through

Static Information Flow Analysis. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 555–568.

[37] Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh. [n. d.].

HyperFlow: A Processor Architecture for Nonmalleable, Timing-Safe Infor-

mation Flow Security. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto Canada, 2018-10-15). ACM,

1583–1600. https://doi.org/10.1145/3243734.3243743

[38] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A Secure

Processor Architecture for Encrypted Computation on Untrusted Programs. In

Proceedings of the seventh ACM workshop on Scalable trusted computing. 3–8.
[39] Klaus v Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. 2019.

{IODINE}: Verifying {Constant-Time} Execution of Hardware. In 28th USENIX
Security Symposium (USENIX Security 19). 1411–1428.

[40] Joseph A Goguen and José Meseguer. 1982. Security Policies and Security

Models. In 1982 IEEE Symposium on Security and Privacy. IEEE, 11–11.
[41] Shafi Goldwasser and Silvio Micali. 1982. Probabilistic Encryption amp; How

to Play Mental Poker Keeping Secret All Partial Information. In Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing (San Francisco,

California, USA) (STOC ’82). Association for Computing Machinery, New York,

NY, USA, 365–377. https://doi.org/10.1145/800070.802212

[42] Louis Goubin and Jacques Patarin. 1999. DES and Differential Power Analysis

the “Duplication” Method. In Cryptographic Hardware and Embedded Systems:
First InternationalWorkshop, CHES’99 Worcester, MA, USA, August 12–13, 1999
Proceedings 1. Springer, 158–172.

[43] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2009.

Side-channel Analysis of Cryptographic Software via Early-terminating Multi-

plications. In International Conference on Information Security and Cryptology.
176–192.

[44] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-

Software Contracts for Secure Speculation. In 2021 IEEE Symposium on Security
and Privacy (SP). 1868–1883. https://doi.org/10.1109/SP40001.2021.00036

[45] Rakel Haakegaard and Joanna Lang. 2015. The Elliptic Curve Diffie-

Hellman (ECDH). Online at https://koclab. cs. ucsb. edu/teaching/ecc/pro-
ject/2015Projects/Haakegaard+ Lang. pdf (2015).

[46] Patrick Haddad, Yannick Teglia, Florent Bernard, and Viktor Fischer. 2014. On

the Assumption of Mutual Independence of Jitter Realizations in P-TRNG Sto-

chastic Models. In 2014 Design, Automation Test in Europe Conference Exhibition
(DATE). 1–6. https://doi.org/10.7873/DATE.2014.052

[47] Panu Hamalainen, Timo Alho, Marko Hannikainen, and Timo D Hamalainen.

2006. Design and Implementation of Low-Area and Low-Power AES Encryption

Hardware Core. In 9th EUROMICRO conference on digital system design (DSD’06).
IEEE, 577–583.

[48] Ziyad Hanna. 2013. Jasper Case Study on Formally Verifying Secure On-Chip

Datapaths. https://www.deepchip.com/items/0524-03.html. https://www.

deepchip.com/items/0524-03.html

[49] Ben Harris. 2006. RSA Key Exchange for the Secure Shell (SSH) Transport Layer
Protocol. Technical Report.

[50] Christine Hennebert, Hicham Hossayni, and Cédric Lauradoux. 2013. Entropy

Harvesting from Physical Sensors. In Proceedings of the Sixth ACM Conference
on Security and Privacy in Wireless and Mobile Networks (Budapest, Hungary)
(WiSec ’13). Association for Computing Machinery, New York, NY, USA, 149–154.

https://doi.org/10.1145/2462096.2462122

[51] Simon Heron. 2009. Advanced Encryption Standard (AES). Network Security
2009, 12 (2009), 8–12.

[52] Jeremy Holleman, Seth Bridges, Brian Otis, and Chris Diorio. 2008. A 3 `W

CMOS True Random Number Generator With Adaptive Floating-Gate Offset

Cancellation. Solid-State Circuits, IEEE Journal of 43 (06 2008), 1324 – 1336.

https://doi.org/10.1109/JSSC.2008.920327

[53] Russell Housley, Warwick Ford, William Polk, and David Solo. 1999. Internet
X. 509 Public Key Infrastructure Certificate and CRL Profile https://www.rfc-
editor.org/ rfc/ rfc5280.html. Technical Report.

[54] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2021. Hardware information

flow tracking. ACM Computing Surveys (CSUR) 54, 4 (2021), 1–39.
[55] Tony Sale James Wyllie. [n. d.]. A Cryptographic Dictionaryhttps://www.

codesandciphers.org.uk/documents/cryptdict/cryptix.htm. NR 4559, Historic

https://doi.org/10.1007/s00145-010-9089-3
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1109/SEED55351.2022.00014
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://doi.org/10.1109/ESSCIRC.2010.5619875
https://doi.org/10.1109/81.129465
https://doi.org/10.1109/TCSI.2001.972853
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-540-45238-6_13
https://doi.org/10.1145/3243734.3243743
https://doi.org/10.1145/800070.802212
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.7873/DATE.2014.052
https://www.deepchip.com/items/0524-03.html
https://www.deepchip.com/items/0524-03.html
https://www.deepchip.com/items/0524-03.html
https://doi.org/10.1145/2462096.2462122
https://doi.org/10.1109/JSSC.2008.920327
https://www.rfc-editor.org/rfc/rfc5280.html
https://www.rfc-editor.org/rfc/rfc5280.html
https://www.codesandciphers.org.uk/documents/cryptdict/cryptix.htm
https://www.codesandciphers.org.uk/documents/cryptdict/cryptix.htm

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

Cryptographic Collection, Pre-World War I Through World War II, Record Group
457 ([n. d.]).

[56] Jonathan Katz and Yehuda Lindell. 2020. Introduction to modern cryptography.
CRC press.

[57] Yit Phang Khoo, Bor-Yuh Evan Chang, and Jeffrey S Foster. 2010. Mixing type

checking and symbolic execution. ACM Sigplan Notices 45, 6 (2010), 436–447.
[58] Kyungduk Kim, Stefan Bittner, Yongquan Zeng, Stefano Guazzotti, Ortwin Hess,

Qi Jie Wang, and Hui Cao. 2021. Massively Parallel Ultrafast Random Bit

Generation with a Chip-scale Laser. Science 371, 6532 (2021), 948–952.
[59] Joseph R Kiniry, Daniel M Zimmerman, Robert Dockins, and Rishiyur Nikhil.

2018. A Formally Verified Cryptographic Extension to a RISC-V Processor.

Computer Architecture Research with RISC-V–CARRV 2018 (2018).
[60] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19.
Springer, 388–397.

[61] Ting-Kuei Kuan, Yu-Hsuan Chiang, and Shen-Iuan Liu. 2014. A 0.43pJ/bit True

Random Number Generator. In 2014 IEEE Asian Solid-State Circuits Conference
(A-SSCC). 33–36. https://doi.org/10.1109/ASSCC.2014.7008853

[62] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn

Song. 2020. Keystone: An open framework for architecting trusted execution

environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[63] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.

CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the

Ciphertext Side Channel.. In USENIX Security Symposium. 717–732.

[64] Rongzhong Li. 2015. A True Random Number Generator Algorithm from Digital

Camera Image Noise for Varying Lighting Conditions. In SoutheastCon 2015.
1–8. https://doi.org/10.1109/SECON.2015.7132901

[65] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. 2022. Fre-

quency Throttling Side-Channel Attack. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (Los Angeles, CA, USA)

(CCS ’22). Association for ComputingMachinery, NewYork, NY, USA, 1977–1991.

https://doi.org/10.1145/3548606.3560682

[66] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. 605–622. https://doi.org/10.1109/SP.2015.43

[67] Jie Liu and Jianhua Li. 2008. ANovel Key Exchange Protocol Based on RSA-OAEP.

In 2008 10th International Conference on Advanced Communication Technology,
Vol. 3. 1641–1643. https://doi.org/10.1109/ICACT.2008.4494096

[68] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish

Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the

Principle of Transient Non-Observability. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 1397–1414. https://www.usenix.

org/conference/usenixsecurity21/presentation/loughlin

[69] Stefan Mangard. 2003. A Simple Power-analysis (SPA) Attack on Implementa-

tions of the AES Key Expansion. In Information Security and Cryptology—ICISC
2002: 5th International Conference Seoul, Korea, November 28–29, 2002 Revised
Papers 5. Springer, 343–358.

[70] Ueli Maurer. 1996. Modelling a Public-Key Infrastructure. In European Sympo-
sium on Research in Computer Security. Springer, 325–350.

[71] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham

Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instruc-

tions and Software Model for Isolated Execution. Hasp@ isca 10, 1 (2013).
[72] Nissa Mehibel and M’hamed Hamadouche. 2017. A New Approach of Elliptic

Curve Diffie-Hellman Key Exchange. In 2017 5th International Conference on
Electrical Engineering-Boumerdes (ICEE-B). IEEE, 1–6.

[73] Andrew Myers. 2011. Proving noninterference for a while-language using

small-step operational semantics. (2011).

[74] Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2014.

Leveraging Gate-level Properties to Identify Hardware Timing Channels. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 9
(2014), 1288–1301.

[75] Miroslav Perić, Predrag Milićević, Zoran Banjac, Vladimir Orlić, and Saša Miliće-

vić. 2013. High-speed Random Number Generator for Section Key Generation

in Encryption Devices. In 2013 21st Telecommunications Forum Telfor (TELFOR).
117–120. https://doi.org/10.1109/TELFOR.2013.6716186

[76] C.S. Petrie and J.A. Connelly. 2000. A Noise-based IC RandomNumber Generator

for Applications in Cryptography. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 47, 5 (2000), 615–621. https://doi.org/10.

1109/81.847868

[77] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.

2020. Drop by Drop you break the rock - Exploiting generic vulnerabilities in

Lattice-based PKE/KEMs using EM-based Physical Attacks. Cryptology ePrint

Archive, Paper 2020/549. https://eprint.iacr.org/2020/549 https://eprint.iacr.

org/2020/549.

[78] Ling Ren, Christopher W Fletcher, Albert Kwon, Marten Van Dijk, and Srinivas

Devadas. 2017. Design and Implementation of the Ascend Secure Processor.

IEEE Transactions on Dependable and Secure Computing 16, 2 (2017), 204–216.

[79] Eric Rescorla. 1999. Diffie-hellman Key Agreement Method. Technical Report.
[80] Angel Rodriguez-Vazquez, Jose L. Huertas, Adoracion Rueda, Belen Perez-Verdu,

and Leon O. Chua. 1987. Chaos from Switched-Capacitor Circuits - Discrete

Maps. IEEE Proceedings 75 (Aug. 1987), 1090–1106.
[81] A. Rodriguez-Vazquez, A. Rueda, B. Perez-Verdu, and J.L. Huertas. 1987. Chaos

via a Piecewise-Linear Switched-Capacitor Circuit. Electronics Letters 23, 12
(1987), 662 – 663. https://doi.org/10.1049/el:19870473

[82] Ángel Benito Rodríguez Vázquez, Manuel Delgado Restituto, Servando Carlos

Espejo Meana, and José Luis Huertas Díaz. 1991. A Switched-Capacitor Broad-

band Noise Generator for CMOS VLSI. Electronics Letters, 27 (21), 1913-1915.
(1991).

[83] Mike Rosulek. [n. d.]. The Joy of Cryptography. https://joyofcryptography.com

https://joyofcryptography.com.

[84] Andrei Sabelfeld and David Sands. 2009. Declassification: Dimensions and

principles. Journal of Computer Security 17, 5 (2009), 517–548.

[85] Matthias Schunter. 2016. Intel Software Guard Extensions: Introduction and

Open Research Challenges. In Proceedings of the 2016 ACMWorkshop on Software
Protection. 1–1.

[86] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic.

2020. A New Side-Channel Vulnerability on Modern Computers by Exploiting

Electromagnetic Emanations from the Power Management Unit. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
123–138. https://doi.org/10.1109/HPCA47549.2020.00020

[87] Flavien Solt, Ben Gras, and Kaveh Razavi. 2022. CellIFT: Leveraging Cells for

Scalable and Precise Dynamic Information Flow Tracking in RTL. In 31st USENIX
Security Symposium (USENIX Security 22). 2549–2566.

[88] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas

Devadas. 2003. AEGIS: Architecture for Tamper-Evident and Tamper-Resistant

Processing. InACM International Conference on Supercomputing 25th Anniversary
Volume. 357–368.

[89] G Edward Suh, Charles W O’Donnell, Ishan Sachdev, and Srinivas Devadas.

2005. Design and Implementation of the AEGIS Single-Chip Secure Processor

using Physical Random Functions. In 32nd International Symposium on Computer
Architecture (ISCA’05). IEEE, 25–36.

[90] Süleyman Gökhun Tanyer, Kumru Didem Atalay, and Sitki Çagdas Inam. 2014.

Goodness-of-Fit and Randomness Tests for the Sun’s Emissions True Random

Number Generator. In 2014 International Conference on Mathematics and Com-
puters in Sciences and in Industry. 216–218. https://doi.org/10.1109/MCSI.2014.48

[91] Mohit Tiwari, Hassan MGWassel, Bita Mazloom, Shashidhar Mysore, Frederic T

Chong, and Timothy Sherwood. 2009. Complete Information Flow Tracking

from the Gates Up. In Proceedings of the 14th international conference on Archi-
tectural support for programming languages and operating systems. 109–120.

[92] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A sound type system

for secure flow analysis. Journal of computer security 4, 2-3 (1996), 167–187.

[93] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,

Christopher W. Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning

Power Side-Channel Attacks Into Remote Timing Attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22). USENIXAssociation, Boston,MA, 679–

697. https://www.usenix.org/conference/usenixsecurity22/presentation/wang-

yingchen

[94] Wei Wei and Hong Guo. 2009. Bias-free true random-number generator. Opt.
Lett. 34, 12 (Jun 2009), 1876–1878. https://doi.org/10.1364/OL.34.001876

[95] Joel Weise. 2001. Public Key Infrastructure Overview. Sun BluePrints OnLine,
August (2001), 1–27.

[96] Knut Wold and Chik How Tan. 2008. Analysis and Enhancement of Random

Number Generator in FPGA Based on Oscillator Rings. In 2008 International
Conference on Reconfigurable Computing and FPGAs. 385–390. https://doi.org/

10.1109/ReConFig.2008.17

[97] Wing H Wong. 2005. Timing Attacks on RSA: Revealing Your Secrets through

the Fourth Dimension. XRDS: Crossroads, The ACM Magazine for Students 11, 3
(2005), 5–5.

[98] Taiki Yamazaki and Atsushi Uchida. 2013. Performance of Random Number

Generators Using Noise-Based Superluminescent Diode and Chaos-Based Semi-

conductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics 19, 4
(2013), 0600309–0600309. https://doi.org/10.1109/JSTQE.2013.2246777

[99] Kaiyuan Yang, David Blaauw, and Dennis Sylvester. 2016. An All-Digital Edge

Racing True Random Number Generator Robust Against PVT Variations. IEEE
Journal of Solid-State Circuits 51, 4 (2016), 1022–1031. https://doi.org/10.1109/

JSSC.2016.2519383

[100] S. Yasuda, H. Satake, T. Tanamoto, R. Ohba, K. Uchida, and S. Fujita. 2004.

Physical Random Number Generator Based on MOS Structure after Soft Break-

down. IEEE Journal of Solid-State Circuits 39, 8 (2004), 1375–1377. https:

//doi.org/10.1109/JSSC.2004.831480

[101] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher W. Fletcher. [n. d.].

Data Oblivious ISA Extensions for Side Channel-Resistant and High Perfor-

mance Computing. In Proceedings 2019 Network and Distributed System Security
Symposium (San Diego, CA, 2019). Internet Society. https://doi.org/10.14722/

https://doi.org/10.1109/ASSCC.2014.7008853
https://doi.org/10.1109/SECON.2015.7132901
https://doi.org/10.1145/3548606.3560682
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/ICACT.2008.4494096
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://doi.org/10.1109/TELFOR.2013.6716186
https://doi.org/10.1109/81.847868
https://doi.org/10.1109/81.847868
https://eprint.iacr.org/2020/549
https://eprint.iacr.org/2020/549
https://eprint.iacr.org/2020/549
https://doi.org/10.1049/el:19870473
https://joyofcryptography.com
https://joyofcryptography.com
https://doi.org/10.1109/HPCA47549.2020.00020
https://doi.org/10.1109/MCSI.2014.48
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://doi.org/10.1364/OL.34.001876
https://doi.org/10.1109/ReConFig.2008.17
https://doi.org/10.1109/ReConFig.2008.17
https://doi.org/10.1109/JSTQE.2013.2246777
https://doi.org/10.1109/JSSC.2016.2519383
https://doi.org/10.1109/JSSC.2016.2519383
https://doi.org/10.1109/JSSC.2004.831480
https://doi.org/10.1109/JSSC.2004.831480
https://doi.org/10.14722/ndss.2019.23061
https://doi.org/10.14722/ndss.2019.23061

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

ndss.2019.23061

[102] Jiyong Yu, Namrata Mantri, Josep Torrellas, AdamMorrison, and Christopher W.

Fletcher. 2020. Speculative Data-Oblivious Execution: Mobilizing Safe Prediction

For Safe and Efficient Speculative Execution. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 707–720. https:

//doi.org/10.1109/ISCA45697.2020.00064

[103] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Compre-

hensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus,

OH, USA) (MICRO ’52). Association for Computing Machinery, New York, NY,

USA, 954–968. https://doi.org/10.1145/3352460.3358274

[104] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A

Hardware Design Language for Timing-sensitive Information-flow Security.

Acm Sigplan Notices 50, 4 (2015), 503–516.
[105] Huang Zhun and Chen Hongyi. 2001. A Truly Random Number Generator

Based on Thermal Noise. In ASICON 2001. 2001 4th International Conference on
ASIC Proceedings (Cat. No.01TH8549). 862–864. https://doi.org/10.1109/ICASIC.

2001.982700

[106] İhsan Çiçek and Günhan Dündar. 2013. A Chaos-based Integrated Jitter Booster

Circuit for True Random Number Generators. In 2013 European Conference on
Circuit Theory and Design (ECCTD). 1–4. https://doi.org/10.1109/ECCTD.2013.

6662257

https://doi.org/10.14722/ndss.2019.23061
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1109/ICASIC.2001.982700
https://doi.org/10.1109/ICASIC.2001.982700
https://doi.org/10.1109/ECCTD.2013.6662257
https://doi.org/10.1109/ECCTD.2013.6662257

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

A FORMAL STATEMENT OF
CRYPTOGRAPHIC PRIMITIVES

Will start by formally defining the notion of security against chosen

ciphertext attacks. For a give encryption scheme 𝜋 we define the

following experiment 𝐸𝑥𝑝𝐶𝐶𝐴A,𝜋
(𝑛 + 𝑠) parameterized by the security

parameters 𝑛, 𝑠 and an arbitrary (𝑛 + 𝑠)-polynomially bounded

attacker A:

(1) A is given oracle access to 𝑒𝑛𝑐𝑘 (·) and 𝑑𝑒𝑐𝑘 (·). It eventually
outputs two messages𝑚0,𝑚1 of size 𝑛.

(2) A uniform bit 𝑏 ∈ {0, 1} is selected and the challenge cipher-

text 𝑐 ← 𝑒𝑛𝑐𝑘 (𝑚𝑏) is computed and given to A.

(3) A continues to have oracle access to 𝑒𝑛𝑐𝑘 (·) and 𝑑𝑒𝑐𝑘 (·)
except when 𝑑𝑒𝑐𝑘 (𝑐) is queried the oracle returns ⊥. Even-
tually, A outputs a bit 𝑏′.

(4) The result of the experiment is 1 when 𝑏 = 𝑏′ and 0 other-

wise.

We can state the security requirement of the SE system formally as

follows,

Definition A.1 (CCA Security). An encryption scheme 𝜋 is CCA-

secure in the following sense

𝑃𝑟 [𝐸𝑥𝑝𝐶𝐶𝐴A,𝜋
(𝑛 + 𝑠) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (𝑛 + 𝑠)

Where 𝑛𝑒𝑔𝑙 is a function from the natural numbers to the non-

negative real numbers where for every polynomial 𝑝 there is an 𝑋

such that for all 𝑥 > 𝑋 it holds that 𝑛𝑒𝑔𝑙 (𝑥) < 1

𝑝 (𝑥) .

Theorem A.1 (SE CCA Security). The 𝑆𝐸 encryption scheme de-

fined in §4.3 is CCA-secure.

Proof. The proof is a straightforward reduction to the proper-

ties of the strong pseudorandom permutation used by the scheme

as long as 𝑢 is parameterized by 𝑠 and freshly generated for each

query. The detailed proof is presented in introductory textbooks,

such as [83, Ch. 9.4]. □

B FULL PROOF OF SOUNDNESS
B.1 Proof of Lemma 4.1

Proof. The proof follows by structural induction on the deriva-

tion ⟨𝑝, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨p′1, 𝜎

′
1
⟩. First, note that the programs 𝑝′

1
and

𝑝′
2
never diverge in this semantics, which isn’t true for small-step

semantics generally. For the rules CMOV-T, CMOV-F, BOP, and ENC
all step into the same configuration of ⟨skip, 𝜎⟩ thus if 𝑝 is one of

these, we will always have 𝑝′
1
= 𝑝′

2
= skip. In the case of the base

case SEQ rule, the step ends with the configuration ⟨𝑞, 𝜎⟩ in which

case 𝑝′
1
= 𝑝′

2
= 𝑞 since 𝑝 = skip; q. In the main SEQ case, we end

with the configuration ⟨skip; p⟩
Now suppose,

(1) The small-step taken is CMOV − T
Under 𝜎1

⟨𝑟1, 𝜎1⟩ →𝑟 [𝑐1] ⟨𝑟3, 𝜎1⟩ →𝑟 [𝑐3]
⟨𝑘𝑒𝑦𝑅𝑒𝑔, 𝜎1⟩ →𝑟 𝑘 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐1, 𝑘) = 𝑏

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐3, 𝑘) =𝑚 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚,𝑘) = [𝑐5]

⟨if 𝑟1 : 𝑟2 ← 𝑟3 else 𝑟2 ← 𝑟4, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎1 [[𝑐5]/𝑟2]⟩

and under 𝜎2

⟨𝑟1, 𝜎2⟩ →𝑟 [𝑐′1] ⟨𝑟3, 𝜎2⟩ →𝑟 [𝑐′3]
⟨𝑘𝑒𝑦𝑅𝑒𝑔, 𝜎2⟩ →𝑟 𝑘

′ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐1, 𝑘′) = 𝑏′

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑐3, 𝑘′) =𝑚′ 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑚,𝑘) = [𝑐′
5
]

⟨if 𝑟1 : 𝑟2 ← 𝑟3 else 𝑟2 ← 𝑟4, 𝜎2⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎2 [[𝑐5]/𝑟2]⟩

and the typing rule CMOV is applied

Γ ⊢ 𝑟1 : public
Γ ⊢ 𝑟2 : public Γ ⊢ 𝑟3 : public Γ ⊢ 𝑟4 : public

Γ ⊢ 𝑖 𝑓 𝑟1 : 𝑟2 ← 𝑟3 𝑒𝑙𝑠𝑒 𝑟2 ← 𝑟4 : public prog

Since 𝜎1 ≈𝑙 𝜎2 and Γ ⊢ 𝑟1 : public and Γ ⊢ 𝑟3 : public by the

definition of Γ, we have [𝑐1] = [𝑐′
1
] and [𝑐3] = [𝑐′

3
]. Since,

Γ ⊢ 𝑘 : private, we then could consider two cases both of

which resolve in the same way ultimately:

• 𝑘 = 𝑘′. Then we get 𝑏 = 𝑏′ and𝑚 =𝑚′ since the decryp-
tion equation holds for 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 .

• 𝑘 ≠ 𝑘′. Then 𝑏 ≠ 𝑏′ and𝑚 ≠𝑚′. But since Γ ⊢ 𝑏 : private
and Γ ⊢𝑚 : private and same for 𝑏′,𝑚′ and there is now

flow to a public register, this is irrelevant for the low-

equivalence of the states.

In either case, we have Γ ⊢ [𝑐5] : public and Γ ⊢ [𝑐′
5
] : public

but then [𝑐5] ≈ [𝑐′
5
] by Definition 4.1. Since in both cases

only 𝑟2 is updated by an equivalent value and 𝜎1 ≈𝑙 𝜎2, we
can conclude Γ ⊢ 𝜎′

1
≈𝑙 𝜎′2.

(2) The rules CMOV-F, BOP, ENC follow the same argument as

CMOV-T.
(3) Suppose the step applied is the base SEQ rule.

Under 𝜎1:

seq

⟨skip; q, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨q, 𝜎1⟩

and under 𝜎2:

seq

⟨skip; q, 𝜎2⟩
𝑡 (𝜎)
−−−−→ ⟨q, 𝜎2⟩

And the typing rule SEQ is applied
seq

Γ ⊢ 𝑝1 : ℓ′ 𝑝𝑟𝑜𝑔 Γ ⊢ 𝑝2 : ℓ′′ 𝑝𝑟𝑜𝑔 ℓ = ℓ′ ⊔ ℓ′′

Γ ⊢ 𝑝1;𝑝2 : ℓ 𝑝𝑟𝑜𝑔
Since Γ ⊢ 𝜎1 ≈𝑙 𝜎2 and 𝜎1 = 𝜎′

1
∧𝜎2 = 𝜎′

2
, we have Γ ⊢ 𝜎′

1
≈𝑙

𝜎′
2
trivially.

(4) Finally, suppose the step taken is the second SEQ rule
Under 𝜎1:

⟨c, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎′

1
⟩

⟨c; p, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨skip; p, 𝜎′

1
⟩

and under 𝜎2:

⟨c, 𝜎2⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎′

2
⟩

⟨c; p, 𝜎2⟩
𝑡 (𝜎)
−−−−→ ⟨skip; p, 𝜎′

2
⟩

Security Verification of Low-Trust Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

And the typing rule 𝑆𝐸𝑄 is applied:

seq

Γ ⊢ 𝑝1 : ℓ′ 𝑝𝑟𝑜𝑔 Γ ⊢ 𝑝2 : ℓ′′ 𝑝𝑟𝑜𝑔 ℓ = ℓ′ ⊔ ℓ′′

Γ ⊢ 𝑝1;𝑝2 : ℓ 𝑝𝑟𝑜𝑔

By the inductive hypothesis on ⟨c, 𝜎1⟩
𝑡 (𝜎)
−−−−→ ⟨skip, 𝜎′

1
⟩, we

already get 𝜎′
1
≈𝑙 𝜎′2.

The timing property 𝑡 (𝜎1) = 𝑡 (𝜎2) is immediate from assumption

(2) and the restriction on 𝑡 by Eq. 1. □

B.2 Proof of Theorem 4.2
We will give the usual definition of→∗ adjusted to account for the

timing property.

Definition B.1 (Multi-step). The multi-step function

𝑛−→∗ is the
transitive and reflexive closure of

𝑡 (𝜎)
−−−−→. Inductively,

⟨𝑝, 𝜎⟩ 0−→∗ ⟨𝑝, 𝜎⟩

⟨𝑝, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨p′, 𝜎′⟩ ⟨𝑝′, 𝜎⟩ 𝑛−→∗ ⟨𝑝′′, 𝜎′′⟩

⟨𝑝, 𝜎⟩
𝑡 (𝜎)+𝑛
−−−−−−→∗ ⟨𝑝′′, 𝜎′′⟩

Now we can prove the theorem as follows. We will first state a

preservation property here:

Lemma B.1 (Preservation). If

(1) 𝑝 be an SE program

(2) Γ ⊢ 𝑝 : public 𝑝𝑟𝑜𝑔
(3) 𝜎 be an initial state

(4) ⟨𝑝, 𝜎⟩
𝑡 (𝜎)
−−−−→ ⟨p′, 𝜎′⟩

Then we have that 𝑝′ is also well-typed: Γ ⊢ 𝑝′ : public 𝑝𝑟𝑜𝑔

Proof. The proof follows by induction on the derivation of 𝑝′.
□

Proof. The proof follows by induction on the number of steps

taken by →∗. The base case of a single step is immediate from

Lemma 4.1. Now assume it holds for 𝑘 steps, then

(1) Γ ⊢ 𝑝𝑘 : ℓ for the program after 𝑘 steps under 𝜎1
(2) Γ ⊢ 𝑝′

𝑘
: ℓ for the program after 𝑘 steps under 𝜎2

(3) Γ ⊢ 𝜎𝑘 ≈𝑙 𝜎′𝑘 the states after 𝑘 steps

By our argument in Appendix B.1, we know pk = p′k since we
don’t have diverging programs. Then we also have,

(1) ⟨𝑝𝑘 , 𝜎𝑘 ⟩
𝑡 (𝜎)
−−−−→ ⟨q, 𝜎′⟩

(2) ⟨𝑝′
𝑘
, 𝜎′

𝑘
⟩

𝑡 (𝜎)
−−−−→ ⟨q, 𝜎′′⟩

This is exactly what is needed by Lemma 4.1 to take another step

given the type preservation by Lemma B.1. Thus we can conclude

𝜎′
1
≈𝑙 𝜎′2.
The timing property follows directly from Lemma 4.1 for the

base case as well. For the inductive case, note that pk = p′k and that
𝜎𝑘 ≈𝑙 𝜎′

𝑘
at each step. Thus at each step 𝑡 (𝜎𝑘) = 𝑡 (𝜎′

𝑘
) by Eq. 1.

Since→∗ simply sums the trace of natural numbers generated by 𝑡 ,

we have that 𝑛 =𝑚. □

C A BINARY SEARCH ATTACK ON A
CIPHERTEXTWITH REUSED ENTROPY
BITS

Listing 1: A simple bruteforce exploit for an operator that
does not refresh its entropy.

1 enc_boo l t r u e _ p r e d i c a t e = (e n c _ i n t) 1 < 2 ;

2 enc_boo l f a l s e _ p r e d i c a t e = (e n c _ i n t) 2 < 1 ;

3 i n t gues s = MAX_INT / | 2 | ;

4 f o r (i n t i = 30 ; i > 0 ; i −−) {

5 enc_boo l cond = (gues s < s e c r e t) ;

6 / / I f c i p h e r t e x t s a r e no t e qua l
7 i f ((i n t) cond != (i n t) t r u e _ p r e d i c a t e) {

8 gues s −= (1 << i) ;

9 }

10 / / E l s e i f c i p h e r t e x t s a r e e qua l
11 e l s e {

12 gues s += (1 << i) ;

13 }

14 }

The code snippet demonstrates how a poorly designed lt (<)

operator for ciphertexts can lead to a simple brute force exploit

that extracts the secret value of the ciphertext without using the

key. Specifically, the operator here does not refresh the entropy bits

used during the encryption process. The attacker first generates a

secure ciphertext representing true and false. Then it simply starts

with the middle representable integer as a guess and performs a

binary search over all representable integers in the system each

time comparing with the true and false ciphertexts generated in

the first step. For a 32-bit secret integer, the attacker can extract

the secret value in 31 iterations.

D EXAMPLE CODE FOR VULNERABLE
DESIGNS

D.1 Value-dependent Timing Multiplier

1 i npu t c l k ;

2 reg [6 3 : 0] reg_a , reg_b ; / / two op e r and s
3 reg [1 2 7 : 0] o ; / / p r o d u c t
4 reg [5 : 0] coun t e r ; / / s h i f t c o u n t s
5 reg f i n i s h ;

6

7 i n i t i a l beg in

8 o = 0 ;

9 f i n i s h = 0 ;

10 coun t e r = 0 ;

11 end

12

13 a lways @(posedge c l k) beg in

14 i f (r eg_a == 0 | | r eg_b == 0) beg in

15 f i n i s h <= 1 ;

16 end

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste Jeannin, Sharad Malik, and Todd Austin

17 e l s e beg in / / s h i f t and add
18 i f (reg_b [0] == 1)

19 o <= o + reg_a << coun t e r ;

20 reg_b <= reg_b >> 1 ;

21 coun t e r <= coun t e r + 1 ;

22 end

23 end

D.2 Value-dependent Timing RSA

1 i npu t c l k ;

2 reg f i n i s h ;

3

4 reg [1 2 7 : 0] o , o_next , d _ l e f t o v e r , n ;

5 i n i t i a l beg in

6 o_next = c ; / / c i s t h e c i p h e r t e x t

7 o = 1 ;

8 f i n i s h = 0 ;

9 d _ l e f t o v e r = d ; / / d i s d e c r y p t i o n key
10 n = N ; / / N i s t h e modulus
11 end

12

13 a lways @(posedge c l k) beg in

14 i f (d _ l e f t o v e r [0] == 1) beg in

15 o <= (o ∗ o_next) % n ;

16 end

17

18 o_next <= (o_next ∗ o_next) % n ;

19 d _ l e f t o v e r <= (d _ l e f t o v e r >> 1) ;

20 end

21

22 a s s i g n f i n i s h = (d _ l e f t o v e r == 0) ;

	Abstract
	1 Introduction
	2 Background
	2.1 Sequestered Encryption (SE)
	2.2 SE Instruction Set Architecture (ISA)
	2.3 SE Enclave Implementation
	2.4 Opportunities for Hardware Verification

	3 Threat Model
	3.1 Security Goals
	3.2 Attacker Capabilities
	3.3 Root of Trust

	4 SE ISA Modeling and Analysis
	4.1 ISA Direct Disclosure Safety Requirements
	4.2 ISA Indirect Disclosure Safety Requirements
	4.3 Formalization of ISA Properties
	4.4 Summary of Proof Obligations Discharged to RTL Verification

	5 RTL Security Properties
	5.1 blackRTL-Level Security Goal
	5.2 ISA-RTL Property Mapping
	5.3 SE Definition
	5.4 Classic Information Flow Definition
	5.5 Information Flow with Ciphertext Declassification
	5.6 Summary

	6 Implementation and Evaluation
	6.1 SE RTL Enclave Design Details
	6.2 Evaluation Overview
	6.3 Experimental Results
	6.4 Summary

	7 Related Work
	7.1 Secure Hardware Architectures
	7.2 Functional Leakage and Timing Leakage
	7.3 Hardware Security Evaluation Schemes

	8 Conclusions
	References
	A Formal Statement of Cryptographic primitives
	B Full Proof of Soundness
	B.1 Proof of Lemma 4.1
	B.2 Proof of Theorem 4.2

	C A Binary Search Attack on a Ciphertext with Reused Entropy Bits
	D Example Code for Vulnerable Designs
	D.1 Value-dependent Timing Multiplier
	D.2 Value-dependent Timing RSA

