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Abstract— This paper offers a finite-state abstraction of
traffic coordination and congestion in a network of intercon-
nected roads (NOIR). By applying mass conservation, we model
traffic coordination as a Markov process. Model Predictive
Control (MPC) is applied to control traffic congestion through
the boundary of the traffic network. The optimal boundary
inflow is assigned as the solution of a constrained quadratic
programming problem. Additionally, the movement phases
commanded by traffic signals are determined using receding
horizon optimization. In simulation, we show how traffic
congestion can be successfully controlled through optimizing
boundary inflow and movement phases, commanded by traffic
signals at junctions of an NOIR.

I. INTRODUCTION

Urban traffic congestion management is an active research
area, and physics-based modeling of traffic coordination has
been extensively studied by researchers over the past three
decades. It is common to spatially discretize a network of
interconnected roads (NOIR) using the Cell Transmission
Model (CTM) which applies mass conservation to model
traffic coordination [1], [2]. To control and analyze traffic
congestion, the Fundamental Diagram is commonly used to
assign a flow-density relation at every traffic cell. While
the Fundamental Diagram can successfully determine the
traffic state for small-scale urban road networks, it may
not properly function for congestion analysis and control in
large traffic networks. Modeling of backward propagation,
spill-back congestion, and shock-wave propagation is quite
challenging. The objective of this paper is to deal with
these traffic congestion modeling and control challenges. In
particular, this paper contributes a novel integrative data-
driven physics-inspired approach to obtain a microscopic
data-driven traffic coordination model and resiliently control
congestion in large-scale traffic networks.

Researchers have proposed light-based and physics-based
control approaches to address traffic coordination challenges.
Fixed-cycle control is the traditional approach for the oper-
ation of traffic signals at intersections. The traffic network
study tool [3], [4] is a standard fixed-cycle control tool for
optimization of the signal timing. Balaji and Srinivasan [5]
and Chiu [6] offer fuzzy-based signal control approaches
to optimize the green time interval at junctions. Physics-
based traffic coordination approaches commonly use the
Fundamental Diagram to determine traffic state (flow-density
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relation) [7], model dynamic traffic coordination [8], incor-
porate spillback congestion [9], infuse backward propagation
[10] effects into traffic simulation, or specify the feasibility
conditions for traffic congestion control. Jafari and Savla [11]
propose first order traffic dynamics inspired by mass flow
conservation, dynamic traffic assignment [12], and a cell
transmission model [1] to model and control freeway traffic
coordination. Model predictive control (MPC) is an increas-
ingly popular approach for model-based traffic coordination
optimization [13], [14]. Baskar et al. [15] apply MPC to
determine the optimal platooning speed for automated high-
way systems (AHS). Furthermore, researchers have applied
fuzzy logic [16], [17], neural networks [18]–[20], Markov
Decision Process (MDP) [21], formal methods [22], [23] and
mixed nonlinear programming (MNLP) [24] for model-based
traffic management. Optimal control [11], [25] approaches
have also been proposed. Rastgoftar et al. [26] model traffic
coordination as a probabilistic process where traffic coordi-
nation is controlled only through boundary inlet nodes.

This paper studies the problem of traffic coordination
and congestion control in a network of interconnected roads
(NOIR). We model traffic coordination as a mass conserva-
tion problem governed by the continuity partial differential
equation (PDE). Through spatial and temporal discretization
of traffic coordination, this paper advances our previous work
[26] by modeling traffic as a Markov process controlled
through ramp meters (at boundary road elements) and traffic
signals (at NOIR junctions). Given traffic feasibility condi-
tions, MPC is applied to assign optimal boundary inflow
such that traffic over-saturation is avoided at every NOIR
road element. As the result, the optimal boundary inflow
is continuously assigned as the solution of a constrained
quadratic programming problem, and incorporated into traffic
congestion planning. Given optimal boundary inflow, move-
ment phase optimization is formulated as a receding horizon
problem where discrete actions commanded by the traffic
signals are assigned by minimization of coordination costs
over a finite time horizon. Our proposed model ensures that
traffic density is non-negative everywhere in the NOIR, if
the traffic inflow is positive at every inlet boundary roads.
Therefore, traffic coordination control can be commanded by
a low computation cost.

This paper is organized as follows. Notions of graph theory
presented in Section II are followed by traffic coordination
modeling in Section III. Finite state abstraction of traffic
coordination is presented in Section IV. Ramp-based and
signal-based traffic congestion controls are presented in
Section V. Simulation results are presented in Section VI
and followed by concluding remarks in Section VII.



II. GRAPH THEORY NOTIONS

Consider a NOIR with < junctions defined by set W =

{1, · · · ,<}. An example of such a NOIR is shown in
Fig. 1 (a). NOIR roads are identified by set V' where 8 ∈V'
is the index number of a road directed from an upstream
junction to a downstream junction. SetV' can be partitioned
into a set of inlet boundary roads V8= and a set of non-inlet
roads V� such that

V' =V8=
⋃
V� . (1)

We also define a single “Exit” road defined by singleton
V� . Note that the “Exit” road does not represent a real
road element (See Fig. 1 (a)); it is defined to model traffic
coordination by a finite-state Markov process. We spatially
discretize the NOIR using graph G (V,E) with node set
V =V'

⋃V� and edge set E ⊂ V×V. Note that the nodes
of graph G are the roads of our NOIR, and subsequently we
use “road” and “node” interchangeably. Graph G is directed
and the edge set E hold the following properties:

1) Traffic flow is directed from road 8, if (8, 9) ∈ E.
2) Real roads defined by set V' are all unidirectional.

Therefore, ( 9 , 8) ∉ E, if (8, 9) ∈ E.
Given graph G (V,E), global in-neighbor, global out-

neighbor, inlet boundary nodes, non-inlet nodes, and “Exit”
node are formally defined as follows:

Definition 1. Given edge set E, the global in-neighbors of
road 8 are defined by set

I8 = { 9 ∈ V' : ( 9 , 8) ∈ E} . (2)

Definition 2. Given edge set E, the global out-neighbors of
road 8 are defined by set

O8 = { 9 ∈ V : (8, 9) ∈ E} . (3)

Definition 3. Inlet boundary roads have no in-neighbors at
any time, and they are formally defined by set

V8= = {8 ∈ V' : I8 = ∅∧O8 ≠ ∅}. (4)

Definition 4. Non-inlet roads have at least one in-neighbor
and one out-neighbor at any time, and they are formally
defined by set

V� =V' \V8=. (5)

Definition 5. The “Exit” node is formally defined as follows:

V� = {8 ∈ V : I8 ≠ ∅∧O8 = ∅} (6)

where we assume that V� is a singleton.

Without loss of generality, inlet boundary nodes are in-
dexed from 1 through #8=, non-inlet roads are indexed from
#8= +1 through # , and the “Exit” node is indexed by # +1.
Therefore V8= = {1, · · · , #8=}, V� = {#8= + 1, · · · , #}, and
V� = {# + 1} define the inlet, non-inlet, and “Exit” nodes,
respectively.

The NOIR shown in Fig. 1 contains 53 unidirectional
“real” roads identified by set V' = {1, · · · ,53} and a virtual
“Exit” node identified by set V� = {54}, i.e. V =V'

⋃V� .

Note that roads 9, · · · ,17 ∈ V� ⊂ V' are in-neighbors to the
“Exit” node 54 ∈V� , as represented by the dotted lines. Thus

I54 = {9, · · · ,17}.

Inlet nodes are identified by V8= = {1, · · · ,8} and V� =
{9, · · · ,53} defines all non-inlet roads.

(a)

(b)

Fig. 1: (a) Example NOIR with 53 unidirectional roads. (b)
Three possible movement phases at junction 10 ∈W.

Movement Phase Rotation: At each intersection, we
define movement phases representing the different possible
configurations of traffic light states at that intersection or,
equivalently, the different possible paths that are allowed
at that intersection. For instance, in the example of Fig. 1,
intersection number 10 has three lights – at the ends of roads
33, 35 and 50 – and three different movement phases:

• the first movement phase _10,1 corresponds to a green
light at the end of road 50, and red lights at the ends
of roads 33 and 35; equivalently, cars are allowed to
circulate from road 50 to roads 34, 13 or 36, and no
other circulation is allowed;



• the second movement phase _10,2 corresponds to a green
light at the end of road 35, and red lights at the end of
roads 33 and 50; cars are only allowed to circulate from
road 35 to either road 13 or 36;

• the third movement phase _10,3 corresponds to a green
light at the end of road 33, and red lights at the end
of roads 35 and 50 to be red; cars are only allowed to
circulate from road 33 to either road 13 or 34.

Those three movement phases define the three possible
configurations of the lights at intersection number 10, and
over time the lights of intersection 10 alternatively go over
those movement phases.

Formally, let M8=, 9 ⊂ V' define incoming roads and
M>DC, 9 ⊂ V' define outcoming roads at junction 9 ∈ W.
Every junction 9 ∈ W is associated with ` 9 movement
phases that can be commanded by the traffic signals. The
set _ 9 ,: ⊂ M8=, 9 ×M>DC, 9 ⊂ E is the :-th movement phase
commanded at junction 9 ∈ W where : = 1, · · · , ` 9 . Move-
ment phases at junction 9 ∈W are defined by finite set � 9

as follows:

� 9 =

` 9⋃
:=1
{_ 9 ,: } = {_ 9 ,1, ...,_ 9 ,` 9 }, (7)

where 9 ∈ W and : = 1, · · · , ` 9 . Note that � 9 is a set of
subsets of edge set E, i.e., is contained in the powerset of
E. We can define

� = �1× · · · ×�< (8)

as the set of all possible movement phases across the NOIR.
Transitions of movement phases are cyclic at every junction
9 ∈ W, and defined by cycle graph C9

(
� 9 ,� 9

)
with node

set � 9 and edge set

� 9 =
{(
_ 9 ,1,_ 9 ,2

)
, · · · ,

(
_ 9 ,` 9−1,_ 9 ,` 9

)
,

(
_ 9 ,` 9 ,_ 9 ,1

)}
(9)

Intuitively, first _ 9 ,1 is the active movement phase defining
the current traffic light states and equivalent authorized paths
at junction 9 ∈ W; then the active movement phase is
switched to _ 9 ,2, then to _ 9 ,3,..., then to _ 9 ,` 9 , then back
to _ 9 ,1 to restart the cycle.

Fig. 1 (b) shows all possible movement phases at junc-
tion 10 ∈ W of the NOIR shown in Fig. 1 (a), where
W = {1, · · · ,13} defines the junctions. The incoming and
outcoming roads are defined by setM8=,10 = {33,35,50} and
M>DC,10 = {13,34,36}, respectively. There are three move-
ment phases _10,1 = {(50,34), (50,13), (50,36)} ⊂ E, _10,2 =
{(35,13), (35,36)} ⊂ E, and _10,1 = {(33,13), (33,34)} ⊂ E.
Note that U-turns are disallowed at every junction of the
Example NOIR shown in Fig. 1.

Movement Phase Activation Time: It is assumed that
movement phase _ 9 ,: ∈ � 9 (: = 1, · · · , ` 9 ) cannot be active
more that )!, 9 time steps, where )!, 9 ∈ N is equivalent
to )!, 9Δ) seconds, and Δ) is a known constant time
step interval. Because movement rotation is cyclic at every
junction 9 ∈W, we define the maximum activation time )!, 9
for every movement phase at NOIR junction 9 ∈W. Define

)9 as the activation time of a movement phase at junction
9 ∈ W, where )9 ≤ )!, 9 . Note that )9 is independent of
index : ∈ {1, · · · , ` 9 } and is counted from the start time of a
movement phase _ 9 ,: at junction 9 ∈W. Given )9 and )!, 9 ,
we define activation index

9 ∈W, g9 =

⌊
)9

)!, 9

⌋
∈ {0,1}

at every intersection 9 ∈ W, where b·c denotes the floor
function. Because )9 ≤ )!, 9 , g9 ∈ {0,1} is a binary vari-
able assigning whether the active movement phase must
be overridden or not. If g9 = 0, the current movement _ 9 ,:
(: = 1, · · · , ` 9 , 9 ∈W) can still remain active. Otherwise, the
active movement phase is overridden and the next movement
phase must be selected.

The network movement phase is denoted by _ =

(_1, · · · ,_<) ∈ � where _ 9 ∈ � 9 and 9 ∈ W. We define the
switching communication graph G_ (V,E_) to specify the
inter-road connection under movement phase _ ∈ �, where
E_ ⊂ E defines the edges of graph G_. Per movement phase
definition given in (7), E_ = ∪<:=1_: . In-neighbors and out-
neighbors of road (or Exit node) 8 ∈ V is defined by the
following sets:

8 ∈ V,_ ∈ �, I8,_ = { 9 ∈ V' : ( 9 , 8) ∈ E_} , (10a)

8 ∈ V,_ ∈ �, O8,_ = { 9 ∈ V : (8, 9) ∈ E_} . (10b)

Given the above definitions, for any _ ∈ �, I8,_ ⊂ I8 and
O8,_ ⊂ O8 , thus:

1) for every _ ∈ �, in-neighbor set I8,_ = ∅ if 8 ∈ V8=;
2) for every _ ∈ �, out-neighbor set O8,_ = ∅ if 8 ∈ V� .

III. TRAFFIC COORDINATION MODEL

We use the mass conservation law to model traffic at
every NOIR road element 8 ∈ V. Let d8 , H8 , and I8 denote
traffic density, traffic inflow, and traffic outflow at every
road element 8 ∈ V. Traffic dynamics governed by mass
conservation is:

d8 (: +1) = d8 (:) + H8 (:) − I8 (:) , (11)

where

I8 (:) =
{
?8 (_) d8 (:) 8 ∈ V', ∀_ ∈ �
d8 (:) + H8 (:) 8 ∈ V� , ∀_ ∈ �

(12a)

H8 (:) =
{
D8 (:) 8 ∈ V8=, ∀_ ∈ �∑
9∈I8,_ @8, 9 (_) I 9 (:) + 38 8 ∈ V \V8=, ∀_ ∈ �

(12b)
and inflow H8 ≥ 0 at road element 8 ∈ V8= has the following
properties:

1) If 8 ∈ V8=, H8 = D8 can be controlled by a ramp meter.
2) If 8 ∈ V� , 38 ≥ 0 is given as a non-zero-mean Gaussian

process.
Note that 38 is uncontrolled at road element 8 ∈ V' \V8=.
Variable ?8 (_) ∈ [0,1] is the traffic outflow probability, and
@8, 9 (_) is the outflow fraction of road element 9 directed



towards 8 ∈ O 9 ,_ when _ ∈ � is the active movement phase
over time interval [C: , C:+1]. Note that∑

9∈O8,_

@ 9 ,8 (_) = 1 (13)

for every _ ∈ �. We define P (_) =

diag (?1 (_) , · · · , ?# (_) , ?#+1 (_)), where ?#+1 (_) = 0
∀_ ∈ Λ. This implies that the outflow of the exit node
is zero. Also, matrix Q(_) =

[
@8, 9 (_)

]
∈ R(#+1)×(#+1) is

non-negative, and

@#+1, 9 (_) =
{

1 9 = # +1 ∈ V�
0 otherwise

. (14)

Eq. (14) implies that traffic does not flow from the exit node
# + 1 ∈ V� to any other element 9 ∈ V' \V� . The traffic
network dynamics is given by

x (: +1) = A (_) x (:) +g (:) (15)

where x (:) =
[
d1 (:) · · · d#+1 (:)

]) and g =[
g)
'

6#+1
])
= [68] ∈ R(#+1)×1 is defined as follows:

68 (:) =


D8 (:) 8 ∈ V8=
38 (:) 8 ∈ V' \V8=
0 8 ∈ V�

. (16)

Also,

A (_) = I−P (_) +Q (_)P (_) =
[
C (_) 0
D (_) 1

]
,

where every column of non-negative matrix A : � →
R(#+1)×(#+1) sums to 1 for every movement phase _ ∈ Λ,
C : �→ R#×# , and D (_) ∈ R1×# . Eigenvalues of matrix
C (_) are all placed inside a disk of radius A_ < 1 with center
at the origin. Note that the 8-th entry of matrix D :�→R1×#

specifies the fraction of traffic flow exiting the NOIR from
node 8 ∈ V'. Traffic dynamics at non-exit nodes is given by

x' (: +1) = C (_) x' (:) +g' (:) , (17)

where x' (:) =
[
d1 (:) · · · d# (:)

]) .

IV. PROBLEM SPECIFICATION

Linear Temporal Logic (LTL) is used to specify the
conservation-based traffic coordination dynamics [27] and
present the feasibility conditions. Every LTL formula con-
sists of a set of atomic propositions, logical operators, and
temporal operators. Logical operators include ¬ (“negation”),
∨ (“disjunction”), ∧ (“conjunction”), and⇒ (“implication”).
LTL formulae also use temporal operators � (“always”), ©
(“next”), ♦ (“eventually”), and U (“until”).

We extend discrete-time LTL with the syntactic sugar
�{0,...,#g } to specify satisfaction of a certain property in
the next #g + 1 time steps. More specifically, �{0,...,#g }i
at discrete time : if and only if i is satisfied at discrete
times : to time : +#g [26].

The problem of traffic coordination can be formally spec-
ified by a finite-state abstraction defined by tuple

M = (S,A,H ,C) ,

where S is the state set, A is the discrete action set, H :S×
A →S is the state transition relation, and C : S×A → R+
is the immediate cost function.

A. State set S
Set S is mathematically defined by

S = {B = (x,g,_, g)
��x ∈ X, g ∈G, _ ∈ �, g ∈ {0,1}<}, (18)

where the traffic density vector x =
[
d1 · · · d#+1

]) ∈
X ⊂ R#+1 and input vector g ∈ G ⊂ R#+1 were intro-
duced in Section III, and X and G are compact sets.
Also, _ =

(
_1,Z1

, · · · ,_
<,Z<

)
∈ � is a movement phase, and

g = (g1, · · · , g<) ∈ {0,1}<, where g8 ∈ {0,1} is the activa-
tion index at junction 8 ∈ W. An execution of the pro-
posed system is expressed by B = B0B1B2, · · · where B: =

(x[:],g: ,_[:], g[:]) is the state of the system at time : .
Feasibility Condition 1: Traffic density, defined as the

number of cars at a road element, is a positive quantity
everywhere in the NOIR. It is also assumed that every road
element has maximum capacity dmax. Therefore, the number
of cars cannot exceed dmax in any real road element 8 ∈ V'.
These two requirements can be formally specified as follows:∧

8∈V'
�{0,...,#g } (d8 ≥ 0 ∧ d8 ≤ dmax) . (Φ1)

If feasibility condition Φ1 is satisfied at every real road
element, then traffic over-saturation is avoided everywhere
in the NOIR, at every discrete time : .

Optional Condition 2: Boundary inflow should satisfy
the following feasibility condition at every discrete time ::

�{0,...,#g }

( ∑
8∈V8=

D8 = D0

)
. (Φ2)

Boundary condition (Φ2) constrains the number of vehicles
entering the NOIR to be exactly D0 at any time : . Note
that D0 is an upper bound on vehicles entering the NOIR.
However, in the simulation results presented, traffic demand
is significant such that the NOIR is maximally utilized by as
many vehicles as possible.

B. Action Set A
Action set A : � × T → � assigns the next acceptable

movement at every junction 8 ∈W, given the current NOIR
activation index g ∈ T = {0,1}< and movement phase _ =

(_1, · · · ,_<), i.e. g = (g1, · · · , g<), g8 ∈ {0,1}, 8 ∈W. We write
_+
8

for the value of _8 in the next state, i.e. _+
8
(:) = _8 (: +1),

and similarly for other variables. Actions are constrained
and must satisfy one of the following LTL formula:

(g8 = 0) ⇒
( (
_8 ,_

+
8

)
∈ Ξ8 ∨

(
_+8 = _8

) )
, (Φ3,8)

(g8 = 1) ⇒
(
_8 ,_

+
8

)
∈ Ξ8 , (Φ4,8)

Combining (Φ3,8) and (Φ4,8), the next movement phase must
satisfy the following LTL formula:∧
8∈W
�{0,...,#g }

( ( ( (
_+8 = _8

)
∈ Ξ8

)
U (g8 = 1)

)
∨

( (
_8 ,_

+
8

)
∈ Ξ8

) )
.

(Φ5)



Remark 1. Set A(_, g) ⊂ � is defined as follows:

A(_, g) = {_+ ∈� | ∀8 ∈W, (_8 ,_+8 ) ∈ Ξ8∨(g8 = 0∧_+8 = _8)}.
(20)

C. State Transition Function
The state transition relation H defines transition from

“current” state B = (x,g,_, g) ∈ S to “next” state B+ =
(x+,g+,_+, g+) ∈ S given action 0 (_, g) ∈ A (_, g). Current
and next movement phases must satisfy condition (Φ6)
below.

Transition of current activation index g must satisfy the
following properties:∧

8∈W

( (
g+8 = 0

)
U

(
)8 = )!,8

) )
. (Φ6)

Note that the )8 is reset every time movement phase is
updated at junction 8 ∈ W. This requirement is formally
specified as follows:

∀8 ∈W,
(
_+8 ≠ _8

)
⇒

(
)+8 = 0

)
(21)

This paper assumes that 68 = 38 is a Gaussian process for
8 ∈ V� is an non-inlet road, i.e. 38 ∼N

(
3̄8 ,f8

)
. Per Eq. (16),

68 = D8 for 8 ∈V8= where D8 is determined as the solution of a
receding horizon optimization problem presented in Section
V. Therefore( ∧

8∈V8=
6+8 = D+8

)
∧

( ∧
8∈V�

6+8 = 38

)
∧

( ∧
8∈V�

6+8 = 0

)
. (Φ7)

Transition of x is governed by (15), thus

x+ = A (_) x+g (22)

where _ ∈ �.

V. TRAFFIC CONGESTION CONTROL

The objective of the traffic congestion control is to de-
termine optimal inflow and movement phase such that cost
function

C
(
x,g1, · · · ,g#g ,_

)
=

#g−1∑
ℎ=0

x)ℎ+1xℎ+1 (23)

is minimized. Optimal traffic inflow is assigned with MPC
while optimal movement phases are assigned as the solution
of a RHO problem. The optimal boundary inflow g∗1 is
assigned by solving the following optimization problem:

x ∈X, _ ∈�,
(
g∗1, · · · ,g

∗
#g

)
= argmin

g1 , · · · ,g#g ∈G
C

(
x,g1, · · · ,g#g ,_

)
,

(24)
subject to the conditions (Φ1), (Φ2) and( ∧

8∈V�
6+8 = 38

)
. (Φ8)

The optimal movement phase _+∗ is assigned by solving
the following optimization problem:

x ∈ X, g1, · · · ,g#g ∈ G, _ ∈ �,
_+∗ = argmin

_+∈A(_,g)
C

(
x,g1, · · · ,g#g ,_

)
, (25)

subject to the conditions
∧
8∈WΦ8,3,

∧
8∈WΦ8,4, and Φ5.

Fig. 2: Optimal boundary inflow rates D1 through D8 versus
discrete time : .

Fig. 3: Optimal movement phases at NOIR junctions at : =
1, · · · ,24.

VI. SIMULATION RESULTS

Traffic coordination is investigated in simulation for the
example NOIR shown in Fig. 1 (a) consisting of # = 53 uni-
directional roads. Traffic coordination is controlled through
the NOIR inlet boundary nodes defined by V8= = {1, · · · ,8}
and traffic signals at junction nodes W = {1, · · · ,17}.

This paper assumes that the time interval between two
consecutive discrete times : and : + 1 is ΔC = 30B. It is
assumed that the inflow H8 =

1
2 ± 0.5 is randomly entered

through every road element 8 ∈ V� . For simulation D0 = 31
is chosen. Therefore, a total of 31 vehicles are allowed
to enter the NOIR through the NOIR inlet boundary road
elements at every discrete time : . Traffic coordination is
controlled through the ramp meter at the NOIR boundary
road elements and traffic signals at NOIR intersections by
solving the optimization problem developed in Section V.

In Fig. 2, boundary inflow rates D1 through D8 are plotted
versus time for : = 1, · · · ,100. For the simulation, dmax = 40
is considered. Fig. 4 plots traffic density d8 at every road
element 8 ∈ V versus discrete time : . It is seen that d (:) <
dmax = 40 at every discrete time : . Thus, traffic oversaturation
is ensured. Also, the total traffic density Anet (:) = 11×# x' (:)
is plotted versus discrete time : in Fig. 5. For simulation,
we choose )!,8 = 3. Therefore, a movement phase cannot be
active more than 3×Δ) = 90B. A movement phase at junction
8 ∈W is represented by a directed tree containing a root node
and terminal nodes per the example movement phase shown
in Fig. 1 (b). The root node represents the active road with
incoming traffic flow, and terminal nodes represent the active
outgoing roads. In Fig. 3, active incoming roads are shown
at NOIR junctions 1, · · · ,13 ∈W for : = 1, · · · ,24.

Fig. 5 plots the net traffic density of the NOIR versus
discrete time : for : = 1, · · · ,24. It is seen that net traffic



Fig. 4: Traffic density at every NOIR road for : = 1, · · · ,24.

Fig. 5: Total traffic density of the NOIR vs. discrete time : .

density reaches the steady-state value in about eight time
steps while traffic consistently enters and leaves the NOIR.

VII. CONCLUSION

This paper offers a physics-inspired approach to model and
control traffic coordination in a network of interconnected
roads (NOIR). Traffic coordination modeled as a Markov
process is obtained by spatial and temporal discretization of
the mass conservation continuity equation. We showed how
traffic congestion can be effectively controlled through ramp
meters and traffic signals located at boundaries and junctions
of the NOIR. In particular, MPC is applied to control the
boundary inflow while a RHO planner optimizes movement
phases commanded by traffic signals at NOIR junctions. Sim-
ulation results show that integration of boundary and signal
controls can effectively manage urban traffic congestion.
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control for urban road traffic networks,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 15, no. 1, pp. 385–398, 2014.

[15] L. D. Baskar, B. De Schutter, and H. Hellendoorn, “Traffic manage-
ment for automated highway systems using model-based predictive
control,” IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 2, pp. 838–847, 2012.

[16] G. Pau, T. Campisi, A. Canale, A. Severino, M. Collotta, and
G. Tesoriere, “Smart pedestrian crossing management at traffic light
junctions through a fuzzy-based approach,” Future Internet, vol. 10,
no. 2, p. 15, 2018.

[17] N. Yusupbekov, A. Marakhimov, H. Igamberdiev, and S. X. Umarov,
“An adaptive fuzzy-logic traffic control system in conditions of satu-
rated transport stream,” The Scientific World Journal, vol. 2016, 2016.

[18] J. Tang, F. Liu, Y. Zou, W. Zhang, and Y. Wang, “An improved fuzzy
neural network for traffic speed prediction considering periodic char-
acteristic,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 9, pp. 2340–2350, 2017.

[19] S. Akhter, R. Rahman, and A. Islam, “Neural network (nn) based route
weight computation for bi-directional traffic management system,”
International Journal of Applied Evolutionary Computation (IJAEC),
vol. 7, no. 4, pp. 45–59, 2016.

[20] K. Kumar, M. Parida, and V. K. Katiyar, “Short term traffic flow
prediction in heterogeneous condition using artificial neural network,”
Transport, vol. 30, no. 4, pp. 397–405, 2015.

[21] H. Y. Ong and M. J. Kochenderfer, “Markov decision process-
based distributed conflict resolution for drone air traffic management,”
Journal of Guidance, Control, and Dynamics, pp. 69–80, 2016.

[22] S. Coogan, M. Arcak, and C. Belta, “Formal methods for control of
traffic flow: Automated control synthesis from finite-state transition
models,” IEEE Control Systems Magazine, vol. 37, no. 2, pp. 109–
128, 2017.

[23] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control
from temporal logic specifications,” IEEE Transactions on Control of
Network Systems, vol. 3, no. 2, pp. 162–172, 2015.

[24] E. Christofa, I. Papamichail, and A. Skabardonis, “Person-based
traffic responsive signal control optimization,” IEEE Transactions on
Intelligent Transportation Systems, vol. 14, no. 3, pp. 1278–1289,
2013.

[25] Y. Wang, W. Szeto, K. Han, and T. L. Friesz, “Dynamic traffic assign-
ment: A review of the methodological advances for environmentally
sustainable road transportation applications,” Transportation Research
Part B: Methodological, vol. 111, pp. 370–394, 2018.

[26] H. Rastgoftar, J.-B. Jeannin, and E. Atkins, An Integrative Behavioral-
based Physics-Inspired Approach to Traffic Congestion Control, 2020,
Dynamics Systems Control Conference.

[27] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference. IEEE, 2009, pp. 5997–6004.


