
A Concurrent Switching Model for Traffic
Congestion Control

Hossein Rastgoftar ∗ Xun Liu ∗∗ Jean-Baptiste Jeannin ∗∗∗

∗ Department of Aerospace and Mechanical Engineering, University of
Arizona, Tucson, AZ 85721, USA (e-mail: hrastgoftar@arizona.edu).

∗∗ Department of Mechanical Engineering, Villanova University,
Villanova, PA 19085, USA (e-mail: xliu8@villanova.edu)

∗∗∗ Department of Aerospace Engineering, University of Michigan, Ann
Arbor, MI, 48109 USA, (e-mail: jeannin@umich.edu)

Abstract: We introduce a new conservation-based approach for traffic coordination modeling
and control in a network of interconnected roads (NOIR) with switching movement phase
rotations at every NOIR junction. For modeling of traffic evolution, we first assume that the
movement phase rotation is cyclic at every NOIR junction, but the duration of each movement
phase can be arbitrarily commanded by traffic signals. Then, we propose a novel concurrent
switching dynamics (CSD) with deterministic transitions among a finite number of states,
representing the NOIR movement phases. We define the CSD control as a cyclic receding horizon
optimization problem with periodic quadratic cost and constraints. More specifically, the cost is
defined so that the traffic density is minimized and the boundary inflow is uniformly distributed
over the boundary inlet roads, whereas the cost parameters are periodically changed with time.
The constraints are linear and imposed by a trapezoidal fundamental diagram at every NOIR
road so that traffic feasibility is assured and traffic over-saturation is avoided.
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1. INTRODUCTION
Traffic congestion is a prevalent global phenomenon that
arose accompanied by the urbanization process, which
imposes enormous costs on both economy and ecology.
According to the statistical investigation, due to the traffic
congestion the average annual cost for a driver in the
US was 97 hours and $1, 348 in 2018 (Reed, 2019). To
this end, traffic management has been extensively stud-
ied by scholars in order to exploit the capacity of the
existing road network such that the congestion can be
alleviated without significant cost. Over the past decades,
A number of approaches for traffic congestion management
have been proposed, which can be roughly categorized
into two groups: physics-based approaches and light-based
approaches.

Physics-based approaches refer to the methods depending
on the traffic model which are related with traffic flow and
queue theory. Incorporating with the mass conservation
law, the Cell Transmission Model (CTM) is widely applied
to spatially partition a network of interconnected roads
(NOIR) into road elements in the process of physics-based
traffic coordination modeling (Daganzo, 1995). Based on
the CTM theory, (Ba and Savla, 2016) propose an optimal
control method to achieve the optimal traffic flow in con-
sideration of the traffic density of the network. Further-
more, (Haddad, 2017) incorporate the perimeter control
approach with the MFD theory to obtain the optimal flow
of the traffic zone. (Li et al., 2017) introduce a feedback
control strategy based on the MFD model to maximize
the traffic volume of the network. In addition, model
predictive control (MPC) is another prevalent approach
for physics-based traffic dynamics optimization (Liu and

Rastgoftar, 2021). To overcome the nonlinearity of the pre-
diction model, (Lin et al., 2011) rewrite the nonlinear MPC
model into a mixed-integer linear programming (MILP)
optimization problem and adopt the efficient MILP solver
to guarantee the global optimum of the traffic flow.

This paper considers the problem of modeling and control
of traffic evolution in an NOIR with movement phase
rotations included at every junction. Compared with our
previous work (Rastgoftar and Jeannin, 2021), the main
goal is to model traffic evolution as a system with cyclic
and deterministic transitions over a finite number of states
representing NOIR movement phases. To this end, we
assume that the movement phase rotation is periodic at
every junction, but the durations of movement phases are
not necessarily the same. To overcome this complexity,
we propose to replace “movement phase duration” by
“movement phase repetition” at every NOIR junction. To
this end, we use a cycle graph with the nodes representing
the movement phases, and the edges specifying transitions
from the current movement phases to the next ones. Note
that the cycle graph authorizes transitions to the next
movement phase, which is either the same or different than
the current movement phase. For traffic congestion, we
assign optimal boundary inflow by solving a constrained
receding horizon optimization problem with a quadratic
cost function that periodically changes with time. The
constraints of this boundary control problems imposing
the feasibility of traffic evolution are linear and obtained
by using a trapezoid fundamental diagram. Therefore, the
optimal boundary inflow is obtained by solving a quadratic
programming problem at every discrete time k ∈ N.



This paper is organized as follows: The definitions and
topology of traffic network are presented in Section 2.
The Problem Statement and Specification are presented
in Sections 3 and 4, respectively, and are followed by the
development of the traffic network dynamics in Section 5.
Traffic congestion control is presented as a periodic reced-
ing horizon optimization problem in Section 6. Simulation
results are presented in Section 7, followed by Conclusion
in Section 8.

2. TRAFFIC NETWORK

We consider a NOIR with unidirectional roads defined by
set V and junctions defined by set W. Interconnections
between the roads are specified by graph G (V, E) with
node set V and edge set E ⊂ V × V. Note that the set
of nodes in the graph represents the set of unidirectional
roads in the NOIR. In this paper, edges defined by E satisfy
the following property:
Property 1. If (i, j) ∈ E, then, traffic is directed from
i ∈ V towards j ∈ V which in turn implies that i ∈ V is
the upstream road.

For every i ∈ V, Ii = {j ∈ V : (j, i) ∈ E} and Oi =
{j ∈ V : (i, j) ∈ E} define the in-neighbors and out-neighbors
of i ∈ V, respectively. In particular, the following condi-
tions hold:

(1) Traffic directed from j ∈ Ii towards i ∈ V, if Ii ̸= ∅.
(2) Traffic directed from i ∈ V towards j ∈ Oi, if Oi ̸= ∅.
By knowing edge set E , we can express V as V =
Vin

⋃
Vout

⋃
VI where inlet road set Vin, outlet road set

Vout, and interior road set VI are formally defined as
follows: Vin = {i ∈ V : Ii = ∅} , (1a)

Vout = {i ∈ V : Oi = ∅} , (1b)
VI = {i ∈ V : Ii ̸= ∅, Oi ̸= ∅} . (1c)

Assuming the NOIR has m junctions, W = {1, · · · ,m}
defines the junctions’ identification numbers. At junction
i ∈ W, the movement phase rotation is defined by cycle
graph Ci (Ei,Ri), where Ei ⊂ E and Ri ⊂ Ei × Ei define
nodes and edges of cycle graph Ci, respectively, where
ri = |Ri| denotes the number of movement phased at
junction i ∈ W. Set Ei can be expressed as

Ei =
ri⋃
j=1

Ei,j , ∀i ∈ W (2)

For better clarification of the above definitions, we consider
an example NOIR of Phoenix City shown in Fig. 1 with
60 unidirectional roads identified by set V = {1, · · · , 60},
where V = Vin

⋃
Vout

⋃
VI , Vin = {1, · · · , 11}, Vout =

{12, · · · , 22}, and VI = {23, · · · , 60}. The NOIR shown
in Fig. 1 consists of 14 junctions defined by W =
{1, · · · , 14}. Set E12 = E12,1

⋃
E12,2

⋃
E12,3

⋃
E12,4 de-

fines the four movement phases at junction 12 ∈ W,
where E12,1 = {(2, 27), (2, 35), (2, 55)} ⊂ E , E12,2 =
{(36, 35), (36, 27), (36, 19), (36, 55)} ⊂ E , E12,3 = {(54, 19),
(54, 27), (54, 55), (54, 35)} ⊂ E , and E12,4 = {(46, 19),
(46, 55), (46, 35), (46, 27)} ⊂ E . The four possible move-
ment phases at junction 12 are shown in Fig. 2(a).
Assumption 1. The next movement phase at junction
i ∈ W can be either the same as or different with
the current movement phase. Mathematically, The next
movement phase Ei,h is not necessarily different with the
current movement phase Ei,l, if (Ei,l, Ei,h) ∈ Ri.

Assumption 1 implies that the phase rotation cycle is still
advanced, if next movement phase Ei,h is either the same
as or different with current movement phase Ei,l,
Assumption 2. Movement phase rotation occurs concur-
rently across the NOIR junctions.

Assumption 2 is not a restricting assumption since repe-
tition of movement phases is authorized at a junction per
Assumption 1. Indeed the duration of particular movement
phase Ei,j (j = 1, · · · , ri) can be chosen arbitrarily large
through defining edge set Ri for i ∈ W. As shown in Fig.
2(b), repetition of a particular movement phase denoted
by Ei,j , is authorized by defining Ei,k = Ei,j and Ei,l = Ei,j
where (Ei,j , Ei,k) ∈ Ri and (Ei,k, Ei,l) ∈ Ri.

Fig. 1. Example NOIR: Street map of Phoenix. Numbers in
blue denote the unidirectional roads V = {1, · · · , 60},
and red color numbers represent junctions W =
{1, · · · , 14}.

Definition 1. The NOIR movement phase rotation is
cyclic and defined by graph CNOIR (L,M) with node set

L = E1 × · · · × Em
and edge set M ⊂ L×L, where × is the Cartesian product
symbol.
Theorem 1. Let ri be the number of movement phases
at junction i ∈ W = {1, · · · ,m}, and movement phase
rotation be cyclic and satisfy∧

i∈W

ri∧
j=1

ri∧
h=1

((Ei,j , Ei,h) ∈ Ri) . (3)

Then, the NOIR cycle is completed in nc time steps where

nc = lcm (r1, · · · , rm) (4)

is the lowest common multiple of r1, · · · , rm.
Proof. Completion of movement phase rotation at every
junction is deterministic and independent of other junc-
tions at every junction i ∈ W. By imposing Assumption
2, the edges of graph CNOIR (L,M), defined by L, are
restricted to satisfy Eq. (3). Because movement phase ro-
tation, completed in ri time steps, is independent at every
junction i ∈ W, the cycle of graph CNOIR is completed in
nc time steps where nc is the lowest common multiple of
r1, · · · , rm and obtained by (3).

Per Theorem 1, graph CNOIR (L,M) consists of nc nodes
defined by set
L = {λj = (E1,j , · · · , Ei,j , Em,j) : i ∈ W, j = 0, 1, · · · , nc − 1}

(5)
Definition 2. The identification number of the NOIR
movement phases are defined by set

σ = {0, · · · , nc − 1} . (6)



Fig. 2(c) shows an example graph CNOIR specifying the
NOIR movement phase rotations for a traffic network with
m junctions.

(a) (b)

(c)

Fig. 2. (a) Possible movement phases at junction 12 ∈ W.
(b) Movement phase rotation given by cycle graph
Ci (Ei,Ri). (c) Schematic of the cyclic graph Ci with
movement phase repetition.

3. PROBLEM STATEMENT

Before proceeding to state the problem studied in this
paper, we define variables ζ[k] ∈ σ and γ[k] ∈ σ by

ζ[k] = k mod nc

γ[k] = (k + 1) mod nc = ζ[k] + 1 mod nc

We apply the cell transmission model to model traffic in a
NOIR by

ρi[k + 1] = ρi[k] + yi[k]− zi[k] + ui[k], (7)

where ρi is the traffic density; ui is the boundary inflow;
and zi and yi are the network outflow and network inflow
of road i ∈ V, respectively; and they are defined as follows:

zi[k] = pi,λζ[k]
ρi[k], λζ[k] ∈ L, ζ[k] ∈ σ (8a)

yi[k] =
∑
j∈Ii

qi,j,λζ[k]
zj [k]

=
∑
j∈Ii

qi,j,λζ[k]
pj,λζ[k]

ρj [k]
, λζ[k] ∈ L, ζ[k] ∈ σ

(8b)

at every discrete time k. Note that(
λζ[k], λγ[k]

)
∈ M, ∀k, (9)

where pi,λζ [k] ∈ (0, 1] is the outflow probability of road
i ∈ V at discrete time k when λζ[k] ∈ M is the active
NOIR movement phase. Also, qi,j,λζ [k] ∈ (0, 1] assigns the
inflow fraction directed towards road i ∈ V from j ∈ Ii
under NOIR movement phase λζ[k] ∈ M at time k.

We consider the following constraints to ensure traffic
evolution feasibility at ever road i ∈ V:∧

i∈Vin

(ui[k] ≥ 0) , k ∈ N, (10a)∑
i∈Vin

ui[k] = u0, k ∈ N, (10b)

∧
i∈V

(0 ≤ ρi[k] ≤ ρ̄max) , k ∈ N. (10c)

Condition (10a) ensures that the boundary inflow is non-
negative at every discrete time k. Condition (10b), requir-
ing the net boundary inflow is equal to constant value u0,
is valid when the demand for using the NOIR is high.
Condition (10c) assures that the traffic density is always
positive and does not exceed ρmax. We use the Fundamen-
tal Diagram (FD) (Wu et al., 2011) with the schematic
shown in Fig. 3 to assure feasibility of the network outflow
at every road i ∈ V. As shown in Fig. 3, the fundamental
diagram is a trapezoid that is determined by knowing ρ̄min,
ρ̄mid, ρ̄max, and z̄max. In particular, the FD is applied to
assure that the outflow of road i ∈ V, denoted by zi is
feasible by satisfying the following inequality constraints:∧

i∈V
(zi[k] ≥ 0) , k ∈ N, (11a)

∧
i∈V

(
zi[k] ≤ min

{
z̄maxρi[k]

ρ̄min
, z̄max,

z̄max(ρi[k]−ρ̄max)
(ρ̄mid−ρ̄max)

})
, k ∈ N.

(11b)

Fig. 3. Graphic representation of constraint equation (11)
imposed by the trapezoid fundamental diagram (Wu
et al., 2011).

The objective of this paper is to determine boundary
inflow ui[k] at every road i ∈ V and every discrete time k
such that the traffic coordination cost defined by

J =
1

2

nc−1∑
j=0

(∑
i∈Vin

u2
i [k + j] + β

∑
i∈V

ρ2i [k + j]

)
(12)

is minimized, where scaling parameter β > 0 is constant.

4. PROBLEM SPECIFICATION

We can express the requirements from Section 3 in Linear
Temporal Logic (LTL). Every LTL formula consists of a
set of atomic propositions, logical operators, and tempo-
ral operators. Logical operators include ¬ (“negation”),
∨ (“disjunction”), ∧ (“conjunction”), and ⇒ (“implica-
tion”). LTL formulae also use temporal operators □ (“al-
ways”), ⃝ (“next”), ♢ (“eventually”), and U (“until”)
(Baier and Katoen, 2008).

The traffic evolution governed by Eq. (7) must satisfy the
feasibility requirements (equations (10a)-(10c)), leading to
the requirements: ∧

i∈Vin

□ (ui ≥ 0) , (13a)

□

(∑
i∈Vin

ui = u0

)
, (13b)∧

i∈V
□ (ρi ≥ 0) , (13c)∧

i∈V
□ (ρi ≤ ρ̄max) . (13d)



Additionally the movement phase rotation can be ex-
pressed as:

□ ((λζ , λγ) ∈ M) . (14)

We can also concisely express the FD constraints (Eq. (9)
and Eqs. (11a)-(11b)), leading to the LTL requirements:∧

i∈V
□ (zi ≥ 0) , (15a)

∧
i∈V

□

(
zi ≤

z̄maxρi
ρ̄min

)
, (15b)∧

i∈V
□ (zi ≤ z̄max) , (15c)

∧
i∈V

□

(
zi ≤

z̄max (ρi − ρ̄max)

(ρ̄mid − ρ̄max)

)
. (15d)

The objective of traffic congestion control is to satisfy the
following liveness conditions:

3

(∣∣∣∣∣ ∧
i∈Vout

zi − u0

∣∣∣∣∣ < ϵ

)
, (16)

where ϵ is constant and obtained in Section 5. Liveness
condition (25) specifies the reachability of the traffic state
to the steady-state condition where the network inflow and
outflow are the same. Theorem 3 presented in Section 5
proves that the liveness condition (25) is satisfied if the
proposed first-order traffic dynamics is used.

5. TRAFFIC NETWORK DYNAMICS

We define tendency probability matrixQ (ζ[k]) =
[
qi,j,ζ[k]

]
∈

RN×N , outflow probability matrix

P (ζ[k]) = diag
(
p1,λζ[k]

, · · · , pN,λζ[k]

)
∈ RN×N , λ ∈ L,

(17)
and

A (ζ[k]) = I+ (Q (ζ[k])− I)P (ζ[k]) , ζ ∈ σ, k ∈ N.
(18)

We also define matrix B = [bij ] ∈ RN×N with the (i, j)
entry that is defined as follows:

bij =

{
1 j ∈ Ii, i ∈ Vin

0 otherwise
. (19)

By defining the state vector x[k] = [ρ1[k] · · · ρN [k]]
T
and

input vector u[k] = [u1[k] · · · uNin
[k]]

T
, and imposing

the CTM given in Eq.(7), the traffic network dynamics
is obtained as follows:

x[k + 1] = A (ζ[k])x[k] +Bu[k], ζ = σ. (20)

Given the above definitions, matrices P (ζ[k]) and Q (ζ[k])
hold the following properties:
Property 2. Diagonal entires P (ζ[k]) are positive and
not greater than 1 because pi,λζ [k] ∈ (0, 1] for every i ∈ V.
Property 3. Matrix Q (ζ[k]) is a non-negative matrix
because qj,i,λζ [k] ∈ (0, 1] for every i ∈ V.
Property 4. Diagonal entries of matrix Q (ζ[k]) are 0
because i /∈ Oi for every i ∈ V.
Property 5. At each discrete time k ∈ N,

N∑
j=1

Qj,i,λζ [k] = 0, ∀i ∈ Vout, (21a)

∑
j∈Oi

qj,i,λζ [k] =

N∑
j=1

Qj,i,λζ [k] = 1, ∀i ∈ V \ Vout. (21b)

Theorem 2. If Properties 2-5 are all satisfied at each
discrete time k, the traffic dynamics (20) is BIBO stable.

Proof. According to the Gershgorin circle theorem (Horn
and Johnson, 2012), every eigenvalue of matrix Q (ζ[k])−I
lies within at least one of the Gershgorin discs D(−1, 1).
Because entries of matrix P (ζ[k]) are all in the interval
(0, 1], eigenvalues of matrix A (ζ[k]) must be located
within the discsD(0, 1) (Boyd and Vandenberghe, 2018). If
this is not satisfied and some of the eigenvalues of A (ζ[k])
are 1, then, 0 is an element of the spectrum of matrix
Q (ζ[k]) − I, which indicates that the matrix Q (ζ[k]) − I
is not full rank, i.e. rank(Q (ζ[k]) − I) < N . However,
considering the Property 4 of matrix Q, it can be seen
that rows of matrix Q (ζ[k]) − I are independent, which
implies that the rank of matrix rank(Q (ζ[k]) − I) = N .
Therefore, since the assumption of matrix A (ζ[k]) can not
be satisfied, we can draw the conclusion that eigenvalues of
matrixAmust located within the discsD(0, 1) strictly, i.e.
the spectral radius ρ(A (ζ[k])) < 1. Then, since eigenvalues
of matrix A (ζ[k]) are within the unit circle strictly at each
discrete time k, the traffic dynamics (20) is BIBO stable
(Gu, 2012; Liu and Rastgoftar, 2021).

Theorem 3. If Properties 2-5 of matrices P (ζ[k]) and
Q (ζ[k]) are all satisfied, then, liveness condition (25) is
satisfied.

Proof. The traffic dynamics (20) can be rewritten as

x[k+1] = x[k]+(Q (ζ[k])− I) z[k]+Bu[k], ζ = σ, k ∈ N.
(22)

Therefore,

11×N (x[k + 1]− x[k]) = 11×N (Q (ζ[k])− I) z[k] + u0, ζ = σ.
(23)

where 11×N ∈ R1×N is a row vector, with entries that are
all 1, u0 = 11×NBu[k] is constant at every discrete time k
per condition (10b). Because traffic dynamics (20) is BIBO
stable, there exists a discrete time ks such that

|11×N (x[k + 1]− x[k])| < δ1, ∀k ≥ ks, (24a)∣∣∣∣∣11×N (Q (ζ[k])− I) z[k]−
∑

i∈Vout

zi[k]

∣∣∣∣∣ < δ2, ∀k ≥ ks.

(24b)
Note the zi[k] > 0 at every time k, therefore,∣∣∣∣∣ ∧

i∈Vout

zi[k]− u0

∣∣∣∣∣ < ϵ = δ1 + δ2 ∀k ≥ ks. (25)

6. TRAFFIC CONGESTION CONTROL

We use MPC to determine the boundary control u[k] at
every discrete time k by solving a quadratic programming
problem with a quadratic cost and linear constraints
imposing the feasibility conditions into management of
traffic coordination. To this end, we first define matrix
multiplication process

H (ζ[k + i]) = H (ζ[k + i− 1])A (ζ[k]) , i ∈ σ. (26)

subject to
H (ζ[k]) = I. (27)

We then apply (20) to predict the traffic evolution within
the next nc sampling times by

X[k] = G1 (ζ[k])x[k] +G2 (ζ[k])U[k], k ∈ N, ζ ∈ σ,
(28)



where X[k] =
[
xT[k + 1] · · · xT[k + nc]

]T
, U[k] =[

uT[k] · · · xT[k + nc − 1]
]T
, and

G1 (ζ[k]) =

H (ζ[k + 1])
...

H (ζ[k + nc])

 ∈ RNnc×N , k ∈ N, ζ ∈ σ,

(29a)

G2 (ζ[k]) =


H (ζ[k]) 0 0 · · · 0

H (ζ[k + 1]) H (ζ[k]) 0 · · · 0
H (ζ[k + 2]) H (ζ[k + 1]) H (ζ[k]) · · · 0

...
...

...
...

H (ζ[k + nc − 1]) H (ζ[k + nc − 2]) H (ζ[k + nc − 3]) · · · H (ζ[k])

 (1nc×1 ⊗B) .

(29b)
In Eq. (29b)⊗ denotes the Kronecker product and 11×nc

∈
R1×nc is a row vector with the entries that are all 1.
The cost function J can be rewritten as follows:

J (U[k], ζ[k]) =
1

2
UT[k]W1 (ζ[k])U[k] +WT

2 (ζ[k])U[k]

+W3 (ζ[k]) ,
(30)

where

W1 (ζ[k]) = I+ βGT
2 (ζ[k])G2 (ζ[k]) , (31a)

WT
2 (ζ[k]) = βxT[k]GT

1 (ζ[k])G2 (ζ[k]) , (31b)

W3 (ζ[k]) =
1

2
βxT[k]GT

1 (ζ[k])G1 (ζ[k])x[k]. (31c)

Note that W3 (ζ[k]) can be removed from cost function
(30) because it does not depend on U[k]. Therefore,

J ′ =
1

2
UT[k]W1 (ζ[k])U[k] +WT

2 (ζ[k])U[k] (32)

is considered as the cost function of traffic coordination,
and the optimal control variable

u∗[k] =
[
INin

0Nin×Nin(Nc−1)

]
U∗[k] (33)

is assigned by determining U∗[k] by solving of the follow-
ing optimization problem:

min J′ = min

(
1

2
UT[k]W1 (ζ[k])U[k] +WT

2 (ζ[k])U[k]

)
subject to

−G2 (ζ[k])U[k] ≤ G1 (ζ[k])x[k], (34a)

G2 (ζ[k])U[k] ≤ −G1 (ζ[k])x[k] + ρ̄max1Nnc×1, (34b)

W4 (ζ[k])G2 (ζ[k])U[k] ≤ −W4 (ζ[k])G1 (ζ[k])x[k] +v1,
(34c)(

W4 (ζ[k]) +
z̄max

ρ̄max − ρ̄mid
INnc

)
G2 (ζ[k])U[k] ≤

−
(
W4 (ζ[k]) +

z̄max

ρ̄max − ρ̄mid
INnc

)
G1 (ζ[k])x[k] + v2

,

(34d)

(Inc ⊗ 11×Nin)U[k] = u01nc×1, (34e)

where

W4 (ζ[k]) =

P (ζ[k + 1]) · · · 0
...

. . .
...

0 · · · P (ζ[k + nc])

 ∈ RNnc×Nnc ,

(35a)
v1 = z̄max1Nnc

, (35b)

v2 =
z̄maxρ̄max

ρ̄max − ρ̄mid
1Nnc . (35c)

We note that Eq. (15b) does not impose any dynamic
constraint on traffic control but requires the diagonal etries
of matrix W4 to be all less than or equal to z̄max

ρ̄min
.

Table 1. Road elements of the example NOIR
of Phoenix City

ID Name Direction ID Name Direction

1 N10th St.(E McKinley St.- E Pierce St.) S 2 N11th St.(E McKinley St.- E Pierce St.) S

3 E Fillmore St.(N12th St.- N13th St.) W 4 E Pierce St.(N12th St.- N13th St.) W

5 E Taylor St.(N12th St.- N13th St.) W 6 E Fillmore St.(N7th St.- N9th St.) E

7 N9th St.(E Taylor St.- E Polk St.) N 8 N11th St.(E Taylor St.- E Polk St.) N

9 N12th St.(E McKinley St.- E Pierce St.) S 10 E Pierce St.(N7th St.- N9th St.) E

11 N10th St.(E Taylor St.- E Polk St.) N 12 E Fillmore St.(N7th St.- N9th St.) W

13 N9th St.(E Taylor St.- E Polk St.) S 14 N11th St.(E Taylor St.- E Polk St.) S

15 N12th St.(E McKinley St.- E Pierce St.) N 16 E Pierce St.(N7th St.- N9th St.) W

17 N10th St.(E Taylor St.- E Polk St.) S 18 N10th St.(E McKinley St.- E Pierce St.) N

19 N11th St.(E McKinley St.- E Pierce St.) N 20 E Fillmore St.(N12th St.- N13th St.) E

21 E Pierce St.(N12th St.- N13th St.) E 22 E Taylor St.(N12th St.- N13th St.) E

23 N9th St.(E Fillmore St.- E Taylor St.) S 24 N9th St.(E Fillmore St.- E Taylor St.) S

25 N9th St.( E Pierce St.- E Fillmore St.) S 26 N11th St.(E Fillmore St.- E Taylor St.) S

27 N11th St.( E Pierce St.- E Fillmore St.) S 28 N12th St.(E Pierce St.- E Fillmore St.) N

29 N12th St.(E Fillmore St.- E Taylor St.) N 30 E Fillmore St.(N9th St.- N10th St.) W

31 E Fillmore St.(N10th St.- N11th St.) W 32 E Fillmore St.(N11th St.- N12th St.) W

33 E Pierce St.(N9th St.- N10th St.) W 34 E Pierce St.(N10th St.- N11th St.) W

35 E Pierce St.(N10th St.- N11th St.) W 36 E Pierce St.(N11th St.- N12th St.) W

37 N10th St.(E Fillmore St.- E Taylor St.) S 38 N10th St.(E Pierce St.- E Fillmore St.) S

39 E Taylor St.(N9th St.- N10th St.) W 40 E Taylor St.(N10th St.- N11th St.) W

41 E Taylor St.(N11th St.- N12th St.) W 42 N9th St.(E Fillmore St.- E Taylor St.) N

43 N9th St.(E Fillmore St.- E Taylor St.) N 44 N9th St.( E Pierce St.- E Fillmore St.) N

45 N11th St.(E Fillmore St.- E Taylor St.) N 46 N11th St.( E Pierce St.- E Fillmore St.) N

47 N12th St.(E Pierce St.- E Fillmore St.) S 48 N12th St.(E Fillmore St.- E Taylor St.) S

49 E Fillmore St.(N9th St.- N10th St.) E 50 E Fillmore St.(N10th St.- N11th St.) E

51 E Fillmore St.(N11th St.- N12th St.) E 52 E Pierce St.(N9th St.- N10th St.) E

53 E Pierce St.(N10th St.- N11th St.) E 54 E Pierce St.(N10th St.- N11th St.) E

55 E Pierce St.(N11th St.- N12th St.) E 56 N10th St.(E Fillmore St.- E Taylor St.) N

57 N10th St.(E Pierce St.- E Fillmore St.) N 58 E Taylor St.(N9th St.- N10th St.) E

59 E Taylor St.(N10th St.- N11th St.) E 60 E Taylor St.(N11th St.- N12th St.) E

Table 2. Number of movement phases at every
junction i ∈ W

Number of movement phases at junction i denoted by ri
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14
3 3 4 4 3 4 4 3 3 3 4 4 3 4

Table 3. Active incoming roads at W over the
entire cycle of length nc = 12

Active movement phases over a cycle
i ∈ W k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7 k + 8 k + 9 k + 10 k + 11 k + 12

1 1 34 52 1 34 52 1 34 52 1 34 52

2 48 5 60 48 5 60 48 5 60 48 5 60

3 47 3 29 51 47 3 29 51 47 3 29 51

4 9 4 28 55 9 4 28 55 9 4 28 55

5 25 30 43 25 30 43 25 30 43 25 30 43

6 38 31 56 49 38 31 56 49 38 31 56 49

7 27 32 45 50 27 32 45 50 27 32 45 50

8 24 42 6 24 42 6 24 42 6 24 42 6

9 23 39 7 23 39 7 23 39 7 23 39 7

10 33 44 10 33 44 10 33 44 10 33 44 10

11 26 41 8 59 26 41 8 59 26 41 8 59

12 2 36 46 54 2 36 46 54 2 36 46 54

13 35 57 53 35 57 53 35 57 53 35 57 53

14 37 40 11 58 37 40 11 58 37 40 11 58

7. SIMULATION RESULTS

We simulate congestion control in a selected area in
Downtown Phoenix with the map and NOIR shown in
Fig. 1. The NOIR consists of 60 unidirectional roads with
the identification numbers defined by set V = {1, · · · , 60}
and the names listed in Table 1. Road interconnections
are defined by G (V, E) with node set V and edge set
E , where V = Vin

⋃
Vout

⋃
VI , Vin = {1, · · · , 11}, VI =

{12, · · · , 22}. As shown in Fig. 1, the NOIR consists of 14
junctions defined by set W = {1, · · · , 14}. Without loss of
generality, for definition of movement phases, we make the
following assumption in addition to Assumptions 1 and 2:
Assumption 3. At every discrete time k ∈ N, traffic can
enter junction i ∈ W through a single incoming road which
is called active incoming road.

By imposing Assumption 3, the number of movement
phases is either 3 or 4 at every junction i ∈ W (see Table
2). Therefore, the NOIR cycle is completed in nc = 12
time steps. Table 3 lists the active incoming roads over
the NOIR cycle of the length nc = 12.

For traffic simulation, we consider the same FD to obtain
traffic feasibility conditions at every road i ∈ W and
choose the following simulation parameters: z̄i,max = 20,
ρ̄i,min = 20, ρ̄i,mid = 40, ρ̄i,max = 55, and u0 = 50.



(a)

(b)

(c)

(d)

Fig. 4. The optimal boundary inflow at inlet roads (a)
1, 2, 3 ∈ Vin, (b) 4, 5, 6 ∈ Vin, (c) 7, 8, 9 ∈ Vin, and (d)
10, 11 ∈ Vin.

It is seen that the feasibility conditions imposed by the
FD are all satisfied. Also, the net traffic density (

∑
i∈V ρi)

versus discrete time k is plotted in Fig. 5.

8. CONCLUSION

In this paper, we introduced a new physics-inspired ap-
proach law to model the traffic evolution and control
congestion through the boundary roads of a NOIR. By
commanding cyclic movement phase rotation at NOIR
junctions, we modeled traffic coordination by a switching
discrete time dynamics, with deterministic transitions over
finite states representing NOIR movement phases. We
used a trapezoid FD to formally specify the feasibility

Fig. 5. The net traffic density versus discrete time k.

and liveness conditions for traffic coordination. The fea-
sibility conditions impose linear equality and inequality
constraints on traffic congestion control, which was defined
as a receding horizon optimization problem, and can be
solved as a quadratic programming problem.
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