
Provably Safe Controller Synthesis Using Safety Proofs as Building Blocks

Yanni Kouskoulas∗, Aurora Schmidt∗, Jean-Baptiste Jeannin†, Daniel Genin∗ and Jessica Lopez∗

∗Applied Physics Laboratory
Johns Hopkins University

Laurel, MD, USA
{yanni.kouskoulas, aurora.schmidt,

daniel.genin, jessica.lopez}@jhuapl.edu

†Aerospace Engineering Department
University of Michigan

Ann Arbor, MI, USA
jeannin@umich.edu

Abstract—We describe an approach to developing a verified
controller using hybrid system safety predicates. It selects from
a dictionary of sequences of control actions, interleaving them
and under model assumptions guaranteeing their continuing
safety in unbounded time. The controller can adapt to changing
priorities and objectives during operation. It can confer safety
guarantees on a primary controller, identifying, intervening,
and remediating actions that might lead to unsafe conditions
in the future. Remediation is delayed until the latest time at
which a safety-preserving intervention is available. When the
assumptions of the safety proofs are violated, the controller
provides altered but quantifiable safety guarantees. We apply
this approach to synthesize a controller for aircraft collision
avoidance, and report on the performance of this controller
as a stand-alone collision avoidance system, and as a safety
controller for the FAA’s next-generation aircraft collision
avoidance system ACAS X.

I. INTRODUCTION

Formal verification has become an effective tool to prove
that a software system has desired properties, or to identify
problems. It is useful for systems that require a very high
level of assurance, are difficult to test, or where a bug could
lead to grave harm. However, in practice once problems are
identified, it is often not clear how to use the results of the
formal verification to improve the system.

This paper explores how formal proofs that are designed
to evaluate cyber-physical system (CPS) safety can be con-
verted into a controller, and how that controller might be
integrated into a practical system to help ensure a property
of interest. This approach has a wealth of applications for en-
suring safety in cyber-physical systems that may be designed
using machine learning or that depend in complex ways on
inputs from human operators. By driving the design of a
safety enforcement component with a proof of correctness,
we gain a level of assurance beyond what is normally avail-
able, helping ensure more robust, predictable and ultimately
safer performance without sacrificing performance in typical
cases nor desired user suitability properties.

This approach ensures that the system operates without
interference whenever it is safe, but when circumstances
require it seamlessly interleaves motion plans to guarantee

safety properties wherever possible, or maximize them if
they cannot be guaranteed.

The main contributions of this paper are in developing
and demonstrating a practical approach for converting a
safety proof into a system component that guarantees the
safety of motion in a dynamic cyber-physical system. Novel
elements include: a strategy for delaying safety-preserving
maneuvers until the last possible safe moment, allowing the
system to pursue other control objectives whenever it is
safe; an approach to managing multiple safety objectives;
a strategy for maximizing safety even when the desired
safety predicates cannot be guaranteed; and a mechanism
for handling delays caused by human-in-the-loop reactions.

We implement the safety controller ideas in an aircraft
infrastructure as a stand-alone collision avoidance system
to provide a reference system. This can serve as a basis for
evaluating the trade-offs made between safety properties and
other performance measures.

We also use this approach to implement a safety controller
that enforces safety guarantees for the US Federal Aviation
Administration’s (FAA) next-generation aircraft collision
avoidance system, ACAS X. This demonstrates that our
approach can be used to enforce safety properties in systems
with opaque control algorithms, such as those developed
via optimization approaches, neural networks, or learning
algorithms that respond to the environment and evolve over
time.

II. RELATED WORK

This paper combines ideas from the literature, but has
novel characteristics that distinguish it from each.

The concept of using redundant controllers for fault
tolerance was introduced in [1], and was expanded in
[2], [3] to combine a reliable controller, whose safety is
known, and an experimental controller, intended to provide
improved performance. In this work, we use a synthesized
fallback controller, endowed with formal proofs about which
actions ensure safety in unbounded time, and when to act to
minimize disruption to a primary controller.

The concept of the viability kernel in [4] is closely related
to the ideas of the safeable and critical parts of the state
space pictured in Fig. 2. This work develops an approach
for collision avoidance for the system to rediscover and
reenter the viability kernel if something in its environment
has forced it out, and also explores what might be done
in cases where our state does not allow us to reenter the
viability kernel. Our method does not use polytopes as the
means for overapproximation and can handle the nonlinear
dynamics associated with Dubins paths.

In Modelplex, Mitsch and Platzer [5] use violation of the
correctness proof to determine whether the assumptions are
violated. In VeriPhy, Bohrer et al. [6] extend ModelPlex and
show how to transform verified models of cyber-physical
systems into controller executables. This paper differs be-
cause we state general requirements to use this approach that
does not use differential dynamic logic, and use a strategy
to maximize safety when the primary safety properties are
not enforceable.

Bak et al. [7] translate verified hybrid automata into exe-
cutable Stateflow/Simulink models. Aréchiga and Krogh [8]
translate a proof about verified envelopes into a controller.
In our work, the proof is not just a constraint for designing
the controller, it is the core of the controller. There is
no refinement step because the controller gives discrete
advice. The non-determinism associated with the system is
associated with the specific choice of trajectory by the pilot,
outside of the control of the controller. We wrapped the core
logic in a layer of glue designed to handle events disallowed
by our expected dynamics and evolutions of the system that
are not expected to be possible.

There is a wide range of prior work [9], [10], [11], [12]
conducting safety analyses of collision avoidance systems,
but these works do not attempt to directly use these results
to create safe system components.

III. APPROACH

A current focus of many artificial intelligence and plan-
ning systems is on the problem of combining previously
learned action primitives into a sequential plan in order
to satisfy higher order objectives. This paper treats the
problem of synthesizing action primitives into a controller
that can support multiple objectives, and has verified-by-
design formal guarantees.

In this section, we: describe an approach to modeling
the system we wish to control; describe a class of safety
proofs based on this model that are necessary and sufficient
to synthesize a controller that comes with formal guarantees
of safety; explain the intuition behind the controller by char-
acterizing the system’s state space; and describe controller
synthesis, discussing its behavior and properties.

A. World model
Formal proof of safety guarantees requires a formal model

of the environment or system in which the controller will

Fig. 1. Schematic illustration of uncertainty growth in future projection of
action plan. Set S0 corresponds to the initial known state of the actor. Sets
S1 and S2 correspond to reachable sets at the end of actions (d1,M1) and
(d2,M2), respectively.

operate. We introduce definitions and notation for describing
the dynamics of the controlled system. These definitions
are general enough to apply to areas as diverse as dextrous
robotics, swarming, or aircraft collision avoidance.

We describe the system that we wish to safely control as
a hybrid system, composed of multiple actors each with a
set of discrete modes of operation, and each with varying
degrees of predictability in their behavior.

Each actor ai in the system has a set of dy-
namic variables that we can collect in a vector, ~X =
(xa1

1 , xa1
2 , . . . , xa2

1 , xa2
2 , . . .) and differential equation de-

scribing the dynamics of the system ∂ ~X/∂t = ~g(~X).
We specify fundamental actions of the system as a finite

dictionary of action primitives. An action primitive is repre-
sented as a pair µ = (d,M), where d is the duration of the
action and M is the vector of bounds for the actor’s dynamic
variables, e.g., acceleration and velocity. The continuous-
time equations that govern the dynamics of the system
plus the nondeterministic range of system parameters define
the envelope of possible system evolutions of the actor’s
dynamic variables during the primitive. The nondeterminism
also can accommodate uncertainty in the actors’ physical
models, sensor measurements, controller performance, as
well as the actors’ behavior models.

For example, an action primitive might be “accelerate to
velocity ν.” The mobile robotic system then accelerates the
appropriate actor within a bounded range of accelerations,
[amin, amax] until it reaches a state in which its velocity is
within a target range, [νmin, νmax]. This example shows how
an action primitive represents the pursuit of a specific goal
by executing a behavior that falls within a specified range
of system evolutions. Other examples of action primitives
include a horizontal turn for a mobile vehicle or the rotation
of a robotic joint above some prescribed minimum rate.
Our approach is to leverage safety guarantees that we have
proven for these action primitives to create a high-level, safe-
by-design controller.

We define an action plan as a finite, bounded-length
sequence of action primitives. For actor a, the plan σa is

given by
σa = (µa

1 , µ
a
2 . . . , µ

a
n) (1)

where µa
i = (dai ,M

a
i). The last action in the sequence has

infinite duration. When there are multiple actors in the sys-
tem, we allow for the possibility that some are uncontrolled,
i.e. are not directly influenced by the controller. We will
refer to the uncontrolled actors’ action plans as behavior
models, to reflect that they have large ranges of uncertainty
surrounding their dynamic parameters, so they include a
wide range of realistic possible action sequences.

An action plan is not realizable as a collection of time-
dependent state trajectories until it is instantiated with a set
of initial states, since each action primitive only constrains
the dynamic system parameters. Once a plan is combined
with the range of initial states, each action’s set of terminal
states is exactly the set of initial states for the next action,
as shown in Fig. 1. Since actions are defined by ranges
of parameters rather than specific parameter values, even
if the state of an actor is known with high precision at
the beginning of its plan, by the end of the first action,
it will only be possible to say that the actor’s state is
within the set that is reachable by following all possible
trajectories with parameters specified by M1 for time d1.
In most cases, the uncertainty in the state of the controlled
and uncontrolled actors will increase as the planned action
sequence is projected into the future. Properly “gluing”
together action primitives in a way that correctly accounts
for this growth in uncertainty is one of the challenges in
constructing safety predicates as discussed in Sections III-B.

A scenario, Σ = {σc
1, σ

c
2, . . . σ

u
1 , σ

u
2 , . . .} is a set of action

plans – one for each actor in the system. We use superscripts
u and c to indicate action plans and behavior models for
controlled and uncontrolled actors, respectively.

B. Safety Predicate Building Blocks

Our synthesis of a formally verified controller depends
on a set of formally verified theorems about predicates
that ensure the system’s safety properties. We require a
set of predicates Pi(s,Πi) that each evaluate the system’s
satisfaction of an instantaneous safety property i when the
system is in state s, for safety parameters Πi = {pi1, pi2, . . .}.

We further require quantifier-free predicates Ψi for each
property i, and safety proofs in unbounded time

∀s0,Σ,Πi,Ψi(s0,Σ,Πi)→
∀t, λ ∈ Λ(Σ), t > 0→ Pi(SΛ(Σ)(s0, λ, t),Πi) (2)

parameterized by initial state s0, scenario Σ, and safety pa-
rameters Πi. We use the mapping SΛ(Σ)(s0, λ, t) to describe
the system’s state at time t during its operation, when s0 is
it’s initial state at t = 0, and the parameter λ is an element
taken from Λ(Σ), the space of non-deterministic trajectories
possible for the system when it satisfies the constraints of
scenario Σ. This guarantees that if we started in a state where

we can ensure safety, we will continue to be able to provide
that guarantee, provided the behavior model and action plan
parameters are not violated.

We define operators that manipulate action plans: ‘e::q’ is
a cons operator that adds a maneuver e to the beginning of
an action sequence q; ‘p++q’ appends action sequence p to
action sequence q; σ / u and σ . u produce head (of length
u) and tail (with duration u removed from the beginning)
of action plan σ, respectively. The . is like a fast-forward
operator that advances an action plan through time as actors’
state evolves. For a plan σ = (d,M) :: ρ and time u,

σ . u =

{
(d− u,M) :: ρ for u < d
ρ . (u− d) for u ≥ d (3)

σ / u =

{
(u,M) for u < d

(d,M) :: (ρ / (u− d)) for u ≥ d (4)

We lift . and / to scenarios, applying the operators element-
wise to each action plan.

We require monotonicity of Ψi

∀s0,Σ,Πi,Ψi(s0,Σ,Πi)→
∀t, λ ∈ Λ(Σ), t > 0→ Ψi(SΛ(Σ)(s0, λ, t),Σ . t,Πi) (5)

so that we can evaluate Ψi to detect model assumption
violations.

We define the set of safe parameter possibilities for each
starting point and scenario as

RΨi
(s,Σ) = {α |Ψi(s,Σ, α)} (6)

We also require a monotonicity property in parameter
space for each predicate i such that

∃ f(·),∀ s,Σ,Ξ, f (RΨi(s,Σ)) < f (RΨi(s,Ξ))→
RΨi(s,Σ) ⊂ RΨi(s,Ξ) (7)

so that we can use

VΨi(s,Σ) = f (RΨi(s,Σ)) (8)

as a metric that helps us quantify an action plan’s relative
“closeness” to the safety property.

This is useful because if the parameter space is chosen
meaningfully for the problem, it allows the controller to
compare different scenarios to determine how closely they
approach a safety property, even if the safety property with
default parameters cannot be guaranteed. It also enables the
system to distinguish between different scenarios that satisfy
safety predicates, if one is more permissive than another.

C. Safety and Safeability

The organizing idea for translating the collection of
formally verified safety predicates Ψi into provably safe
controller depends on a partitioning of the state space into
regions (Fig. 2).

The safeable region identifies points in the state space
that could be made safe in unbounded time, even if the

current action plan does not do so. More precisely, this
implies that the present action plans are immediately safe,
and will remain so for some time duration; that there is time,
given the system’s dynamics, for the controller to transition
to and impose new safety-preserving action plans before
the present ones allow safety properties to fail; and that
once implemented, the safety-preserving action plans ensure
safety properties under model assumptions in unbounded
time. Safeable points depend on a number of system pa-
rameters: what safety-preserving action plans are allowable
for the controller to implement in the future; how long the
duration is between control decisions; and what is the range
of possible motion plans that might be implemented between
now and the next control decision.

We formalize the definition of the safeable region by
defining transformations on an action plan for actor a,

Sa(h, σ) = h++(T,M free
a) :: r++σ (9)

which represents the actor transitioning to and following an
action plan σ in the future after a delay of T . For controlled
actors, h represents effects of control actions that have been
initiated but because of time lag in system response have
not yet affected the systems dynamics; the pseudo-action
(T,M free) represents a period where the controller freely
follows one of a set of alternate allowable action primitives
for a duration T between system control actions; r repre-
sents control actions that transition to the main scenario;
and σ represents the main scenario, which follows. For
uncontrolled actors, h represents dynamics from past action
initiations that are lagging in time, (T,M free) represents
evolution until the next control action with appropriate
uncertainty under present conditions, and r the reaction to
the controlled part of the system if the controller were to
initiate an equivalently extended strategy on the controlled
actors. We extend S so that when applied to a scenario, the
operator applies element-wise to each actor’s action plan
within the scenario, using the version of the transformation
operator specific to each actor. We can then write

SafeableΨi
(s, h) = ∃j,Ψi (s,S(h,Σj),Πi) (10)

The transition period added by each transformation repre-
sents a sort of penalty to switching from unrelated actions
to a safety-preserving scenario, since it takes time during
which the system can evolve in a way that is adversarial for
preserving the safety properties.

The critical region is part of the state space where
there exists a safety-preserving action plan that could be
implemented immediately to guarantee safety properties in
unbounded time. However, unlike the safeable region, there
is no grace period that allows us to implement the plan at
some future time; our motion is close to violating safety
guarantees, there is not enough time to wait to transition
to something safe later. Critical points also depend on the

Critical

Unsafe

Safeable

Fail

SΛ(Σ)(s0, λ, t)

Fig. 2. State space divided into safeable, critical, unsafe and failure regions.
Dashed line shows the path the state of the system follows over time, as
it evolves through the state space following scenario Σ, for a specific non-
deterministic evolution designated by λ ∈ Λ(Σ).

available safety-preserving action plans, and other system
parameters. To formalize the critical region, we define

Ca(h, σ) = h++r++σ (11)

which is similar to Sa but represents the actor immediately
initiating action plan σ. It still represents lag in the system
and response to commands issued in the past, followed by
a transition period, but does not have a delay in initiation.
We can now write

CriticaldΨi
(s, h) = (∀k,¬Ψi (s,S(h,Σk),Πi))∧

(∃j,Ψi (s, C(h,Σj) . d,Πi)) (12)

for d ≥ 0.
The unsafe region is where no action plan can guarantee

safety properties in unbounded time. It is possible that the
system will continue to maintain safety properties, or it is
possible that safety properties fail in the future – but there
is no sequence of action primitives that the controller can
choose that definitively guarantees safety, given the system’s
dynamics and uncertainty.

Finally, in the fail region, the failure of safety properties
of the system is guaranteed; it has either occurred or is
imminent and unavoidable, for any choice of action plan,
and for every possible evolution of system dynamics.

D. Controller Synthesis

In the prior subsection, we have set down the basis
and definitions from which we will construct a verified
control system. This system will be realized in one of two
configurations. The first configuration is as a system monitor
plus fallback controller. This set-up, also referred to as a
simplex architecture [2], couples a primary controller with
a safety controller, and uses logic to switch control to the
safety controller to maintain safety properties. The primary
controller could be a complex AI system that optimizes
statistical performance measures, or an unpredictable human

operator. Alternately, we can use our approach to generate
a stand-alone controller. In that case we pursue a similar
approach, defaulting to a set of non-safety oriented action
plans that are interleaved according to system requirements.
The safety controller takes over if evolving conditions would
not allow us to ensure the safety properties in the future.

In a simplex architecture, the proposed controller simul-
taneously performs the functions of monitor and fallback
controller. It receives information from the primary con-
troller on the current action it is pursuing. The controller
then considers all possible subsequent scenarios from the
finite set to determine which would be safe. If the primary
controller chooses an action in a critical state that is not
safeable, or part of a safe action plan, the fallback controller
takes over and commands a verified safe action plan.

We assume that the controller gets periodic updates of
sensor data every T seconds reflecting the system’s envi-
ronment, and that it will be able to update action primitive
selection at discrete, periodic times. This is typical of many
embedded control systems.

1) Constructing Realistic Scenarios: The scenarios we
construct describe action sequences and behavior models
for the different actors in the system. It is important to
create scenarios that describe realistic system behavior that
spans the range of possibilities during its operation, because
the controller will only be able to apply safety proofs to
definitively guarantee safety properties when the system’s
behavior falls within the scenarios.

Each action primitive can incorporate non-determinism,
since they represent a family of uncertain actor trajectories
that follow the continuous dynamics of that mode. When
there is further uncertainty about what an actor will do,
we can create a pseudo-action encompassing several ac-
tions, which we will denote with ∪ni=1Mi; thus we can
conservatively model an actor that may choose any one
of the included actions in a particular time interval. The
fungibility of uncertainty and unpredictability allows us to
use these broader primitives to model several effects that are
important in real-world applications. We use this approach
to model actions of the primary controller in a simplex
architecture to decide whether the fallback controller must
activate to ensure safety, since the fallback controller does
not have information about primary controller’s intentions.
We also use this approach to model uncontrolled actors in the
system. The trade-off with this conservative representation is
increased uncertainty about the state of the actor. However,
this provides a way to lend safety guarantees to a complex
system, such as those optimized through deep learning.

Similarly, pseudo-actions can also be used to model delays
in response to control actions, and potential unspecified
evolution during these transitions, by inserting a pseudo-
maneuver µdelay encompassing the range of possible evolu-
tions between consecutive maneuvers – µ1, µdelay, µ2. This
is particularly relevant for tele-operated and human-in-the-

loop systems, e.g., the airborne collision avoidance advisory
system ACAS X discussed in Section IV. Modeling response
delays is necessary to maintain conservative assumptions
about the behavior of a human operator.

Finally, pseudo-actions can be used to represent uncer-
tainty in the duration of actions by adding a pseudo-action
that blends the adjacent actions. For example, by inserting
µblend = (d,M1 ∪ M2) between actions µ1 = (d1,M1)
and µ2 = (d2,M2) we can create a plan (µ1, µblend, µ2)
in which the transition from µ1 to µ2 can occur any time
between d1 and d1 + d. In Section III-B, this will provide
the flexibility necessary to model variable duration actions,
while restricting to a finite selection of scenarios.

We construct our action sequences so the start of each
action is correlated (possibly through system delay periods)
with the discrete times representing the system’s update
interval, but in between these control actions, our proofs
represents the system’s evolution using a continuous model
of dynamics that evolves in an uncertain, non-deterministic
environment. In this manner, we are able to construct rich
sequences of actions to accomplish finite-horizon control
goals, while still making statements about the safety of the
system in unbounded time.

2) Controller Algorithm: We begin by briefly outlining
the control scheme before presenting details in subsequent
subsections. During each control activation, the controller
uses safety predicates to determine where in the state space
it is. If it is safeable, it is free to implement action plans for
some duration that satisfy alternate mission objectives while
still preserving the safety properties of the system. If it is
elsewhere in the state space, it should first initiate and then
at the next control action, follow safety-preserving scenarios
with action plans that are guaranteed to ensure future safety
by the verified predicates, keeping the system state out of
unsafe or failing regions. It selects control decisions based
on evaluation of a finite library of scenarios.

The controller can initiate and then follow a single safety-
preserving scenario or a set of them if they share a prefix of
action primitives. During subsequent control activations, the
action primitives that the controller chooses determine which
scenarios are still being followed, and which ones no longer
match the control history. The scenarios that remain are
interchangeable, and any one of them can represent the sys-
tem’s current state. If safety priorities change dynamically
during system operation, the system can without penalty
choose to follow one of the scenarios already underway, if
it more closely satisfies the new requirements.

Evaluating a set of scenarios in this fashion is similar to
finite-horizon planning, a common strategy used in Model
Predictive Control [13]. The difference is that our controller
evaluates the safety of scenarios for unbounded time, since
the last action primitive in the scenario for each actor’s plan
continues indefinitely. This does not force the controller
to follow that action primitive into unbounded time; if

conditions allow, the controller can switch to another plan
and begin issuing other action primitives. However, the
infinite duration action primitives at the ends of planned
action sequences in a scenario preserve safety in cases where
the system finds no alternate scenarios to which it can switch
and remain safe. This ensures that the controller can continue
to execute the current scenario, ensuring safety properties
until a safeable state is reached and the system is allowed
to revert to pursuing other performance objectives.

3) Controller Implementation: Fig. 3 is a pseudo-code
listing showing how the controller evaluates each scenario
available to it at every control decision. This ensures the
controller links safety proofs together to ensure safety in
unbounded time, and adjusts itself to find the best possible
action when the safety properties cannot be satisfied.

The function control_action closes on two vari-
ables, d, h. Each element of the vector d represents the
duration that the system has been following the scenario
with that index; and the vector h contains a history of action
primitives that model motion resulting from commands that
have been issued in the past, but because of system lag have
not yet affected the system’s dynamics. The parameter s
represents present system state, ap represents the control
action the primary controller is issuing at this moment. T is
the period of control actions in the system, and g is the lag
between control action and system response.

The first clause of the conditional checks for safeability,
i.e. whether the primary controller can be allowed to proceed
without interference. It does not need to model the details of
the primary controller’s actions; it only needs a scenario Σ0

that is comprised of a pseudo-action encompassing the un-
certainty in the union of the primary controller’s dictionary,
which may differ from that of the safety controller.

Within the second clause of the conditional, the vectors a,
v, and m hold information in each element about the strategy
with the corresponding index. Elements of a represent
the action that must be taken to follow the corresponding
strategy; elements of v and m indicate whether a particular
strategy maintains the safety property, and a metric of how
safely it does so, respectively, for each safety property. The
function ζ(Σ, d) represents a state machine that computes
what action needs to be taken for strategy Σ after duration
d; this helps model variable system delays due to human
reaction time. The function U(·) selects which control action
to implement for states where not all safety properties can be
guaranteed, based on how closely each scenario approaches
each property. We use λ notation to express anonymous
functions in the pseudo-code.

4) Dynamically adapting safety guarantees: If we create
a controller as we have described, and the system evolves
within the expected dynamics model, then the control
decisions guarantee that safety properties are maintained
under all conditions, because they are based on formally
verified predicates. When the system strays from a safeable

let d = zeros(k), h = Σ0 / g
function control_action(s,ap)
if mapreduce(λi.

mapreduce(λj.Ψj (s,S(h,Σi),Πj), and,
1:n), or, 1:k) then

(an,d) = (ap,zeros(size(d)))
h = (h.T)++(Σ0/T)

else
a = map(λi.λe.ζ(Σi,e), 1:k, d)
v = map(λi.λe.

map(λj.Ψj (s, C(h,Σi . e),Πj),1:n),
1:k, d)

m = map(λi.λe.
map(λj.VΨj (s, C(h,Σi . e)),1:n),
1:k, d)

if mapreduce(λj.reduce(and,v[j]),or,
findindices(λq.q==ap, a))

an = ap
else

an = U(ap,a,v,m)
end
d = map(λi.λe.(an==ζ(Σi,e))?e+T:0,

1:k, d)
n = findindices(λq.q==an, a)[1]
h = (h.T)++(Σn.d[n]/T)

end
return an

end
end

Fig. 3. Controller pseudo code.

state, it will encounter a critical state and there will be
a safe scenario available that the controller will identify
and implement to ensure it stays in the critical or safeable
parts of the state space. Under model assumptions, we are
guaranteed that the system cannot evolve from a safeable
state to an unsafe state without encountering a critical state;
and scenarios are guaranteed to maintain it in a critical state,
and allow it to return to safeable conditions when possible.
The safety predicates Ψi(·) can account for sensor noise and
variations in system behavior by using non-determinism to
representing uncertainty in state.

However, events could violate basic model assumptions
and dynamics. In these cases, the system may unexpect-
edly jump to a point in the state space that was judged
unreachable under the current policy and assumptions. Our
controller can adaptively switch between scenarios in its
library, interleaving plans to ensure safety in response to
unexpected environments.

If the controller finds itself in a critical state that it did
not expect, it can identify a scenario to which it can switch
to maintain safety. If it finds itself in an unsafe or failing
state, it can use the metrics from Eqn. 8 to find the strongest
safety guarantee available under the circumstances.

IV. ACAS X SAFETY CONTROLLER DESIGN AND
INTEGRATION

We have described requirements for synthesizing a
correct-by-construction safety controller, but required pa-
rameters, e.g. ζ(·), U(·), and f(·) are highly problem

specific. In this section, we demonstrate the approach by
developing a controller that ensures safety properties under
model assumptions for the FAA’s next-generation air-traffic
collision avoidance system, ACAS X. This research was
conducted in May 2016, using ACAS X Run 14, the most
recent version of the system at that time.

A. ACAS X Background

The ACAS X airborne collision avoidance system [10]
provides advice to pilots about how to manage vertical
velocity that helps avoid collisions with other aircraft. Its
core logic is developed for a two-aircraft encounter. ACAS
X behavior is primarily based on a lookup table that contains
the optimal solution to a Markov decision process (MDP)
that was learned through dynamic programming, i.e. value
iteration. The MDP represents the aircraft motion during
an encounter and the chosen costs associated with different
events. The system tries to strike a balance between low alert
rate and improving safety. The state-space discretization and
dynamics of the MDP do not fully represent all the behaviors
necessary for the system, so it contains additional logic
known as online costs. The human pilot is an integral part of
the system’s control algorithm, and introduces a significant
amount of variability in terms of the exact acceleration that
is chosen, the delay that they might use in responding to
and complying with ACAS X advice.

We adopt the static proofs used for safety analysis de-
scribed in [12]; they have been applied to ACAS X to
evaluate it’s performance in different parts of the state
space, and are customized to the ACAS X assumptions
and environment. They also fit the requirements necessary
to use them as building blocks with which to synthesize
a safe controller: they are formally verified to evaluate
a safety property, namely collision avoidance; they allow
the evaluation safety for a sequence of maneuvers; and
maneuvers are defined by a pilot model that includes a
stateful delay along with a set of acceleration and velocity
limits that change between each maneuver.

B. Motivation

The safety analysis in [12] identified critical areas in
the state space where ACAS X could provide advice that
avoided a mid-air collision under model assumptions, but
did not. This may reflect a measurable reduction in safety
during system operation.

Even though critical points represent a small percentage
of the state space, the relative importance of these areas –
i.e. their prior probabilities during the time leading up to
a collision – is unknown. This is precisely the time when
collision avoidance advice is critical.

After studying the system and the data, we believe that
the system’s safety performance was affected by significant
noise from the system’s surveillance and tracking module.
Fig. 4 plots the noise produced in that component as it

900 1000 1100 1200 1300
0

500

1000

1500

2000

2500

3000

time (s)

ra
ng
e
(f
t)

r

Fig. 4. The horizontal range during a two-aircraft encounter output by
the ACAS X Run14 surveillance and tracking module over time. The true
range would be a smooth curve.

estimates horizontal range to the intruder aircraft for one
encounter. At t = 1095, in a matter of seconds, the hori-
zontal range of the two aircraft drop from 600 to 500 feet,
putting the system in a close-range geometry that requires
careful handling; the noise artifacts during this time interval
falsely create the appearance of increasing safety, with the
horizontal range appearing to change from 50 feet to 800
feet. The noise in the estimated horizontal range values is
due to the instability of conversions from slant to horizontal
range estimates. It would be difficult for any controller to
ensure safety in such an environment. The stability of the
tracking system in subsequent versions of ACAS X was
improved in response to these observations.

Our objective was to translate the existing static safety
proofs into a safety controller that would increase the
system’s safety for these critical areas in the state space,
and evaluate the system’s improvement when it encounters
unexpected, unmodeled noise.

C. Design

For a two-aircraft encounter, we instantiate our world-
model from Section III-A so that it has four actors, a vertical
and horizontal actors for each aircraft, controlling the re-
spective types of motion. The aircraft in which observer sits
is called the own-ship, while the other aircraft is called the
intruder. The horizontal motion for the own-ship and intruder
are similar: they are under the control of each respective
pilot, but not in the scope of advice that is provided by the
collision avoidance system. Consequently, they are consid-
ered uncontrolled actors in our model. The vertical motion
of the intruder aircraft also has uncontrolled dynamics, but
the vertical motion of the own-ship is influenced by our
control decisions, so it is the only controlled actor in the
model. So for our air-traffic collision avoidance formulation,
Σ = {σc

own-vert, σ
u
int-vert, σ

u
own-horiz, σ

u
int-horiz}.

The safety proofs we are using can evaluate different types

of horizontal motion, but for our case we instantiate the
horizontal actors for both aircraft so that they follow straight-
line, non-accelerating, deterministic horizontal motion. We
do this because we expect ACAS X to exhibit its safest
performance under these circumstances.

We instantiate an actor modeling vertical intruder motion
that accounts for non-determinism within acceleration limits,
i.e. a cone that widens over time and envelops a family of
possible trajectories whose acceleration falls within those
limits. The actor modeling own-ship vertical motion is
instantiated similarly, but it also has a velocity bounds with
which it attempts to comply, and a minimum compliance
acceleration that creates the cone of uncertainty. The pa-
rameters for the own-ship vertical actions match the set of
parameters from collision-avoidance advice defined by the
FAA community for the ACAS X system. For example, the
action primitive (d,DES1500) requires the pilot to accelerate
vertically at least g/4 towards a vertical descent velocity not
less that 1500 feet per minute for duration d. The action
primitive (d,SDES2500) requires the pilot to accelerate
vertically at least g/3 towards a vertical descent velocity
not less that 2500 feet per minute.

We combine vertical ACAS X action primitives into a
library of action plans for the vertical behavior that follow
transition rules imposed by the FAA community developing
ACAS X, so that the actor for vertical control makes actions
with the same restrictions and is compatible with that en-
vironment. The collision avoidance strategies are sequences
of one or two action primitives (in ACAS X terminology,
they are called advisories because they are being suggested
to the pilot) that lead to the strongest possible advice in one
direction or the other. The vertical actor for our controller
in ACAS X environment has a library of seven action plans,
each representing a single collision avoidance strategy. One
example action plan is

σc
own-vert = ((T,DES1500), (∞,SDES2500)) (13)

This represents the system issuing a downward advisory
“descend at at least 1500 ft/min” T , followed immediately
followed by a stronger advisory, “descend more strongly at
at least 2500 ft/min,” to a pilot who delays 5T before re-
sponding. We use r = ((5T,M free)) to model the transition
to our action plan, in this case it represents pilot response
delay. The function ζ which encodes control action timing
using the ACAS X standard pilot model with an update
interval of T = 1s.1. During the delay the pilot maneuvers
without regard to the advisory and the aircraft follows a free-
acceleration action primitive. It is followed by a response to
the first advisory and then a stronger acceleration response
to the second advisory, which is followed until the aircraft

1ACAS X allows up to 5 s delay before compliance for the first advisory
and up to 3 s for subsequent advisories https://www.iata.org/whatwedo/
safety/Documents/IATA guidance Assessment of pilot compliance to
TCAS.pdf

re-establish safe separation. Predicates ensure that any pilot
delay within the assumptions continues to ensure safety.

The safety predicate Ψ(g0,Σ, hv) we adopt from prior
work in safety analysis of the ACAS X system is one
that establishes whether the future trajectories maintain at
least vertical separation hv when the horizontal positions of
both aircraft coincide. For ACAS X, the FAA’s definition of
collision is a Near Mid-Air Collision (NMAC), defined as
an event where one aircraft comes within a hockey puck-
shaped volume of another. The puck extends above and
below each aircraft 100ft, so asserting Ψ(g0,Σ, 100ft) would
guarantee no future NMAC under our model assumptions in
unbounded time, when following scenario Σ.

Additionally, we define a metric using f(x) = min(x)

VΨ = min {hv |Ψ(g0,Σ, hv)} (14)

where we compute the minimum (worst-case) vertical sepa-
ration hv that might be encountered in that scenario during
the aircraft encounter. By computing VΨ, the system can
distinguish between different unsafe action plans when there
is no option available that preserves safety. We use VΨ

to handle uncharacterized noise or other unexpected events
that push the system into unsafe parts of the state space
through evolutions that are not allowable in the formal
model. The system can then switch to the safest strategy
available to it at that moment, according to this metric.
As part of this work, we developed formal proofs in Coq
that the algorithm we used to compute VΨ during a se-
ries of maneuvers guarantees the expected vertical separa-
tion. We based these proofs on the development in [12],
changing the logical predicates to computational machinery.
We were able to directly translate these computations into
formally verified functions that compute VΨ using Coq’s
Recursive Extraction command. Our proofs can be
downloaded at https://tinyurl.com/ybh5fn5f.

We define a priority for evaluation of scenarios: the system
first attempts to find vertical control scenarios that avoid
NMAC, Ψ(..., 100ft). In the event this cannot be guaranteed,
it chooses the control scenario that maximizes vertical miss
distance, VΨ, guaranteeing the maximum worst-case vertical
separation for the encounter given our model assumptions,
i.e. U(ap, a, v,m) = a[findindex(i⇒ i == max(m),m)].

The controller is implemented as described in Fig. 3. Its
manipulation of the fast-forward operator and prepending
delays encapsulates the pilot delay model, tracks the shifting
of the pilot’s attention and the pilot’s response to those
previously issued advisories, and allows transitions between
the different strategies if it is safe to do so. It also chooses
the best strategy to maximize vertical miss distance, if no
other way to guarantee NMAC avoidance exists.

D. Integration

We implemented the safety controller and integrated it
with ACAS X as an online cost so that it did not require

https://bitbucket.org/ykouskoulas/vmd_safety_proofs/src/

additional system modification. The safety controller eval-
uates ACAS X advice and provides a set of weights that
influence the relative desirability of different actions based
on our evaluation of safety. As an alternative, we tested the
result of overriding the costs for each action completely,
providing a stand-alone collision avoidance reference system
focused on our safety guarantees.

E. Performance Results: Critical States

We chose a set of critical points in the state space
from the safety analysis where there was advice that would
definitively keep the encounter safely separated but where
ACAS X Run 14 gave advice that would allow a compli-
ant pilot to have a collision. For each critical point, we
created encounters where the two aircraft approach and
reach that point at constant velocity, and where the own-
ship begins accelerating vertically in response to safety
advisories thereafter. We compared the simulated safety
performance of these encounters for ACAS X Run 14+,
ACAS X Run 14+ with the integrated safety controller,
and for the safety controller in a stand-alone configuration.
The code complexity and memory footprint of the safety
controller is significantly less than that of the full Run 14+
system, making it a useful reference system for comparison.

1) In-Model Performance: When the simulations as-
sumed sensors with noise performance that were consistent
with the parameters we used in our proofs, the safety
controller gave advice that eliminated all NMACs, resulting
in fully safe operation.

2) Performance During Model Violation: Only when we
added sufficient uncharacterized sensor noise did it become
possible to violate the assumptions of our safety proofs and
cause a collision. The rest of the performance evaluation
assesses how the safety controller handles model violations.

We found that even with model violations due to un-
characterized noise, the safety controller was effective at
improving the safety of encounters that pass through critical
parts of the state space. Fig. 5 shows a comparison of the
probability of NMACs for the different configurations; a
lower NMAC rate indicates safer advice.

The encounters were constructed from conditions where
ACAS X advice allowed a compliant pilot to have a col-
lision, so the NMAC rate of ACAS X alone in simulation
is around 90%. In 10% of cases, other system components
further changed system behavior and resulted in a safe
encounter. For ACAS X, this noise environment is not un-
expected since it is the one used during system development
to tune the system’s performance.

We set the parameters so the safety controller expected
a noise-free surveillance and tracking module. We ran
simulations with conditions from Fig. 4 that violated the
controller’s noise assumptions. Even with significant unchar-
acterized noise in the system, the NMAC rate goes from
around 90% to around 45% when the safety controller is

���������

Delayed pilot attention

N=12,109

0.0

0.2

0.4

0.6

0.8

NMAC Rate

ACAS XR14

ACAS XR14+SC

SC

Fig. 5. Safety performance on a set of stressing encounters passing through
from critical states comparing ACAS X to various configurations of the
safety controller (SC).

���������

Delayed pilot attention

N=12,109

0.0

0.1

0.2

0.3

0.4

0.5

Reversal Rate

ACAS XR14

ACAS XR14+SC

SC

Fig. 6. Advisory reversals on a set of stressing encounters passing through
critical states comparing ACAS X to various configurations of the safety
controller (SC).

integrated with ACAS X as an online cost (ACAS X R14+
SC). The safety controller in stand-alone configuration (SC)
provides even better safety without ACAS X logic.

For ACAS X, improving safety often results in reversals
in collision-avoidance advice, which are undesirable. Fig.
6 shows that once the system reaches these critical points
in the state space, safety is improved without negatively
impacting reversal metrics.

F. Performance Results: LLCEM encounters

Section IV-E showed that the safety controller improves
safety for a carefully selected, pathologically dangerous
set of encounters. This section evaluates a broader set
of encounters, derived from the MIT Lincoln Laboratory
Correlated Encounter Model (LLCEM), one of the primary
models used to evaluate the safety of ACAS X [14].

The LLCEM represents a broad spectrum of encounters
intended to model typical aircraft encounters in the US
airspace, and its statistics are derived from aircraft during
regular flight that are mostly not in the midst of collision.

As before, we evaluated the safety controller’s perfor-
mance with uncharacterized noise. It’s parameters were set
to expect a noiseless surveillance and tracking module,
and the system’s tracking module produced the type of
uncharacterized noise discussed in Fig. 4.

Table I data shows that adding the safety controller online

TABLE I
SAFETY COMPARISON USING LLCEM

(N=500,000) Probability of NMAC
Average Standard Deviation

TCAS 2.78e-4 2.28e-6
ACAS X 1.69e-4 2.50e-6
ACAS X+SC 1.63e-4 2.30e-6

cost to ACAS X improved the safety of advice over that
given by ACAS X Run14 by 3.6%. We can conclude that the
safety controller continues to show good performance when
handling uncharacterized noise; that it does not adversely
affect system safety in other parts of the state space; and
that the encounters sampled by the LLCEM do not contain
a statistically significant representation of the encounters
developed in Section IV-E.

These tests show that our approach improves system
performance in a dangerous part of the state space that is
not being otherwise evaluated by broad statistical metrics.

V. CONCLUSION

This work translates a formal proof of safety into a
practical cyber-physical system component, demonstrating
a promising approach that could be used to improve safety
performance and provide formal guarantees.

It also demonstrates, for ACAS X, the ability to improve
the system’s performance in a safety-critical part of the state
space that is important during collisions, but is not well
represented in the standard statistical model used for safety
evaluation. Use of this approach would require additional
development and further evaluation of airspace models that
test both safety and suitability measures.

Acknowledgments: We gratefully acknowledge Neal
Suchy and Joshua Silbermann for their leadership and
support, and André Platzer, Khalil Ghorbal, and Christo-
pher Rouff for comments and technical discussion. This
work was supported by the Federal Aviation Administra-
tion Traffic Alert & Collision Avoidance System Program
Office AJM-233 and The Volpe National Transportation
Systems Center under Contract Nos. DTFAWA11C00074
and DTRT5715D30011.

REFERENCES

[1] M. Bodson, J. Lehoczky, R. Rajkumar, L. Sha, and J. Stephan,
“Analytic redundancy for software fault-tolerance in hard real-
time systems,” Foundations of Dependable Computing. The
Springer International Series in Engineering and Computer
Science, vol. 284, 1994.

[2] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex ar-
chitecture for safe online control system upgrades,” American
Control Conference, pp. 3504–3508, 1998.

[3] D. Phan, J. Yang, M. Clark, R. Grosu, J. D. Schierman, S. A.
Smolka, and S. D. Stoller, “A component-based simplex ar-
chitecture for high-assurance cyber-physical systems,” CoRR,
vol. abs/1704.04759, 2017.

[4] J. Maidens, S. Kaynama, I. Mitchell, M. Oishi, and G. A.
Dumont, “Lagrangian methods for approximating the viability
kernel in high-dimensional systems,” Automatica, vol. 49,
no. 7, pp. 2017–2029, 2013.

[5] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime
validation of verified cyber-physical system models,” Form.
Methods Syst. Des., vol. 49, no. 1, pp. 33–74, 2016. Special
issue of selected papers from RV’14.

[6] B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and
A. Platzer, “VeriPhy: Verified controller executables from ver-
ified cyber-physical system models,” in PLDI (D. Grossman,
ed.), pp. 617–630, ACM, 2018.

[7] S. Bak, O. A. Beg, S. Bogomolov, T. T. Johnson, L. V.
Nguyen, and C. Schilling, “Hybrid automata: from verifica-
tion to implementation,” International Journal on Software
Tools for Technology Transfer, pp. 1–18, 2017.

[8] N. Aréchiga and B. Krogh, “Using verified control envelopes
for safe controller design,” in 2014 American Control Con-
ference, pp. 2918–2923, June 2014.

[9] R. Lee, M. J. Kochenderfer, O. J. Mengshoel, G. P. Brat, and
M. P. Owen, “Adaptive stress testing of airborne collision
avoidance systems,” in Digital Avionics Systems Conference
(DASC), 2015 IEEE/AIAA 34th, pp. 6C2–1, IEEE, 2015.

[10] M. J. Kochenderfer and J. P. Chryssanthacopoulos, “Robust
airborne collision avoidance through dynamic programming,”
Tech. Rep. ATC-371, MIT Lincoln Laboratory, January 2010.

[11] J. B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt,
R. Gardner, S. Mitsch, and A. Platzer, “A formally verified
hybrid system for safe advisories in the next-generation
airborne collision avoidance system,” STTT, 2017.

[12] Y. Kouskoulas, D. Genin, A. Schmidt, and J. B. Jeannin, “For-
mally verified safe vertical maneuvers for non-deterministic,
accelerating aircraft dynamics,” in ITP (M. Ayala-Rincón
and C. A. Muñoz, eds.), vol. 10499 of LNCS, pp. 336–353,
Springer, 2017.

[13] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive
control: Theory and practice–a survey,” Automatica, vol. 25,
pp. 335–348, May 1989.

[14] M. J. Kochenderfer, L. P. Espindle, J. K. Kuchar, and J. D.
Griffith, “Correlated encounter model for cooperative aircraft
in the national airspace system version 1.0,” Tech. Rep. ATC-
344, MIT Lincoln Laboratory, October 2008.

	Introduction
	Related Work
	Approach
	World model
	Safety Predicate Building Blocks
	Safety and Safeability
	Controller Synthesis
	Constructing Realistic Scenarios
	Controller Algorithm
	Controller Implementation
	Dynamically adapting safety guarantees

	ACAS X Safety Controller Design and Integration
	ACAS X Background
	Motivation
	Design
	Integration
	Performance Results: Critical States
	In-Model Performance
	Performance During Model Violation

	Performance Results: LLCEM encounters

	Conclusion
	References

