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Abstract. We present the formally verified predicate and strategy used
to independently evaluate the safety of the final version (Run 15) of the
FAAs next-generation air-traffic collision avoidance system, ACAS X.
This approach is a general one that can analyze simultaneous vertical
and horizontal maneuvers issued by aircraft collision avoidance systems.
The predicate is specialized to analyze sequences of vertical maneuvers,
and in the horizontal dimension is modular, allowing it to be safely
composed with separately analyzed horizontal dynamics. Unlike previ-
ous efforts, this approach enables analysis of aircraft that are turning,
and accelerating non-deterministically. It can also analyze the safety of
coordinated advisories, and encounters with more than two aircraft. We
provide results on the safety evaluation of ACAS X coordinated collision
avoidance on a subset of the system state space. This approach can also
be used to establish the safety of vertical collision avoidance maneuvers
for other systems with complex dynamics.

1 Introduction

As air travel increases and the airspace grows more crowded, existing air traf-
fic management mechanisms such as altitude separation and manned air-traffic
control are expected to experience significant stress. For decades, the Traffic Col-
lision Avoidance System (TCAS) [3], first put into operation in the 1970s, has
been the system of last resort, making mid-air collisions rare events. To address
limitations that have been identified in TCAS, and to safely handle additional
congestion and new participants expected in the future, the US Federal Aviation
Administration (FAA), along with international partners, is developing a drop-
in replacement, the next-generation Collision Avoidance System called ACAS X
[9]. Like TCAS, ACAS X is intended to provide a final measure of safety, giving

This work was supported by the Federal Aviation Administration (FAA) Traffic-
Alert & Collision Avoidance System (TCAS) Program Office (PO) AJM-233: Volpe
National Transportation Systems Center Contract No. DTRT5715D30011.

c© Springer International Publishing AG 2017
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advice that helps prevent mid-air collisions when all other preventive measures
have failed.

In 2013, our group was designated as the independent verification and valida-
tion (V&V) team for ACAS X. We began developing an independent approach
to formally verify the safety of the overall ACAS X system, either to establish
guaranteed safety under certain operating conditions, or to identify different cat-
egories of problems and bring them to the attention of ACAS X developers and
the FAA. This proved to be challenging for a number of reasons, including that
ACAS X has very complicated behavior, and does not have a precisely stated set
of requirements – informally, its goal is to provide an improvement over TCAS,
both in terms of safety and alerting behavior. In addition, the system has an
enormous state space – over 28×1012 state points – and complex logic based on
the massive lookup table and complementary run-time components. This analy-
sis, detailed in [6,7] has been so successful that we were able to find hundreds
of millions of straight-line flight (i.e., the simplest possible) unsafe conditions in
early versions of the system that were not identified by the standard simulation
and testing approaches.

Our previous efforts were fundamentally limited to analyzing intruders that
flew in a straight line, without any acceleration or maneuvering. The analysis also
could not address the safety of an own-ship aircraft (our term for the aircraft in
which the observer travels) that turns or makes any sort of horizontal maneuvers;
previous analysis limited own-ship non-determinism to vertical motion.

The present work describes a new approach to vertical safety analysis that
allows us to analyze the safety of encounters where both the intruder and own-
ship are independently accelerating non-deterministically in the vertical and hor-
izontal directions. To do this, we create a vertical safety predicate that relaxes
the assumption of constant, relative horizontal velocity that in our previous work
restricted us from analyzing horizontal acceleration in maneuvers such as turns.
Our predicate has parameters that describe horizontal safety, but is not limited
to any particular horizontal dynamics; it can be composed with any horizontal
motion that has been correctly analyzed. With the development of appropriate
analysis for different horizontal dynamics, this approach could also assess the
safety of non-deterministic, accelerating horizontal and vertical dog-fight-like
maneuvers.

The main contribution of this paper is in providing a predicate to ana-
lyze the safety of vertical advisories during turns and in the presence of non-
deterministically accelerating intruders. All the theorems in this paper and safety
predicates for vertical motion are formally verified, meaning that their correct-
ness is ensured via a machine-checked mathematical proof.1

The rest of the paper is organized as follows: Sects. 2 and 3 provide an
overview of how to use the predicate by analyzing safety for an example
encounter, describing the parameterization of pilot behavior and horizontal
dynamics; Sect. 4 provides a detailed description of the development of vertical

1 Proofs can be viewed and downloaded at https://bitbucket.org/ykouskoulas/vert
safety proofs/src/.

https://bitbucket.org/ykouskoulas/vert_safety_proofs/src/
https://bitbucket.org/ykouskoulas/vert_safety_proofs/src/


338 Y. Kouskoulas et al.

safety predicates; Sect. 5 discusses issues related to formalizing our guarantees;
Sects. 6 and 7 describes how we extend our safety proofs to a real system, and
our results; and Sects. 8 and 9 describe related work, and conclude.

2 Overview

This section presents an overview of the logic of our approach, starting with its
basic properties and walking through an illustrative example of how it would be
used in practice.

Safety Property. The logic of this approach comes from the definition of safety
used in this analysis; it allows us to decompose the safety analysis into two steps
that we can treat seperately: a horizontal problem, and a vertical problem.

For this work, safety between two aircraft means that one aircraft doesn’t
come within a certain vertically oriented cylinder with radius rp and half-height
hp centered on the other aircraft. This definition includes exact collision as well
as any dangerously close approach between two aircraft, and is referred to by the
aviation community as a Near Mid-Air Collision (NMAC). We call this volume
the NMAC puck due to the resemblance with a hockey puck. Aircraft trajectories
have uncertainty associated with them, and the puck represents the volume in
which the other aircraft location might be found. Entering it represents, in the
worst case, an actual collision.

We define horizontal conflict as the condition where the horizontal projec-
tions of the two aircraft come within the horizontal bounds of a puck centered on
one of them; vertical conflict is when their vertical projections come within the
vertical bounds of a puck, also centered on one of them. The two aircraft have
an NMAC only if they are in horizontal and vertical conflict simultaneously.

To formalize our safety property, we define J(t) = Jx(t)x̂ + Jy(t)ŷ + Jz(t)ẑ
to be the trajectory of the ownship, and K(t) = Kx(t)x̂ + Ky(t)ŷ + Kz(t)ẑ to
be the trajectory of the intruder, both in a Cartesian coordinate system with
x, y and z axes aligned to east, north and up, respectively. We have horizontal
conflict whenever

Ch(t) ≡ |((Jx(t) − Kx(t)) x̂ + (Jy(t) − Ky(t)) ŷ| ≤ rp (1)

is true. We have vertical conflict when

Cv(t) ≡ |Jz(t) − Kz(t)| ≤ hp (2)

is true. An NMAC occurs at time t only when:

Ch(t) ∧ Cv(t) (3)

We will first analyze the horizontal dynamics to determine the timing of the
encounter, i.e. when the aircraft come together. We call this timing a parameter-
ization of horizontal safety, because it establishes safety within a series of time
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intervals. Subsequently, the safe-by-design logic can be used to establish safety
for a sequence of independent, non-deterministic, vertical maneuvers made by
the pilot of each aircraft outside of these intervals. For each safety evaluation,
we must choose a sequence and timing of vertical maneuvers for each aircraft,
and it is under these assumptions that we can establish safety or the possibility
of collision. The following paragraphs go through these steps to apply safety
analysis for a specific example.

Parameterizing Horizontal Safety. To parameterize horizontal safety, we must
analyze the horizontal motion of the two aircraft and identify time intervals in
which the probability of the aircrafts’ horizontal projections coming into proxim-
ity (i.e., horizontal conflict as defined in Eq. 1) is non-zero. Through this horizon-
tal parameterization, we establish safety outside these intervals, because when
the aircraft are far away from each other Ch(t) is false, and Eq. 3 cannot be
satisfied – there is no possibility of immediate collision.

We index each time interval of possible horizontal conflict using index i, and
define tei and txi as times of earliest entry into and latest exit from conditions
where horizontal conflict is possible, for interval i. This defines a set of time
intervals, Vi = [tei, txi], and their union V =

⋃
i∈{1...n} Vi, during which safety

must be established through the absence of vertical conflict.
Consider the example of two aircraft whose horizontal trajectories follow

deterministic circular paths, as shown in Fig. 1, where the speed of the own-ship
is chosen by the pilot. To simplify our example, we assume that the speed of the
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Fig. 1. Example horizontal turning trajectories, projected onto horizontal cartesian
coordinate system, viewed from above. The own-ship trajectory is represented by a
solid line, and the intruder is represented by a dashed line. Circles and green color
indicates the extent of trajectory segments where collision is possible. (Color figure
online)
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Fig. 2. Analysis of encounter timing for one possible combination of ground speeds.
Positions are given as a radian measure on the own-ship’s trajectory circle, and
ground speeds are assumed constant for this particular scenario. The dashed line is
the intruder’s center projected on the own-ship’s trajectory, and when it intersects
the trajectory, the extent of that intersection is plotted above and below the center.
Vertical lines correspond to the beginning and end of time intervals when a collision is
possible, and to the disks in Fig. 1.

intruder is known, although this is not required for the analysis in general. The
solid line represents the own-ship while the dashed line represents the intruder
aircraft. One way to visualize when a collision is possible is to imagine a disk
representing the top of the NMAC puck traveling along one of the trajectories.
When that disk intersects the other trajectory, a collision is possible, depending
on the relative speeds of the aircraft. Here we show the disk on the intruder’s
trajectory at the four points where it touches the own-ship’s trajectory, and
highlight the parts of its trajectory where a collision is possible. Figure 2 illus-
trates the timing analysis that is necessary to compute the horizontal conflict
interval. Assuming the intruder’s ground speed is known and consistent with
Fig. 2, the horizontal conflict intervals for this geometry can be read off the plot
to determine that V = [11.2 s, 20.7 s]∪ [43.5 s, 53.0 s].

Our analysis is not limited to these horizontal dynamics; we can also establish
safety for more complex horizontal motion and other types of non-determinism,
as long as we can compute V .

Sequence and Timing of Vertical Maneuvers. To match common flight patterns
and the ACAS X advisory system, the vertical dynamics of each aircraft is mod-
eled by a sequence of non-deterministic maneuvers, specified by allowed accel-
eration and velocity ranges. By combining maneuvers it is possible to represent
a variety of behaviors, including straight line flight, choice of one of a series of
actions (where the decision is unknown at the time of safety analysis), unre-
stricted vertical flight, compliance with an ACAS X vertical advisory, delayed
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Fig. 3. Bounding envelopes for vertical motion of ownship and intruder (dashed). Hori-
zontal conflict intervals are indicated by vertical lines. Safety is guaranteed despite any
maneuvers the pilots may make that cause variations in vertical acceleration and veloc-
ity, or variations in horizontal ground speed of the ownship, within assumed dynamics.

compliance with an ACAS X advisory, a reversal of vertical motion direction to
ensure safety, or straight line flight followed by a level-off maneuver. Thus, the
proposed dynamics captures many, if not most, operationally relevant aircraft
encounter scenarios.

For our example from Fig. 1, assume the intruder starts above the own-ship,
the aircraft are descending, with the intruder diving towards the ground. The
own-ship engages in a vertical chase for the first 15 s of the encounter, diving
at a less extreme rate, and then follows advice to sharply accelerate upwards,
eventually crossing altitudes with the intruder.

Vertical Safety Predicate. Once we have analyzed horizontal dynamics, and cho-
sen a pilot model (i.e. a sequence of vertical pilot timing and actions) we can
apply the vertical safety predicate to establish whether we can definitively avoid
collision under our assumptions. Figure 3 illustrates the extent of vertical motion
in our example scenario from Fig. 1 by plotting the most extreme vertical trajec-
tories of the own-ship and intruder. These boundaries describe a reachable enve-
lope of altitudes for each moment in time. Our predicate Ψ , described in Sect. 4,
guarantees safety for this geometry under our assumptions, and the figure illus-
trates the intuition behind the predicate’s logic, confirming that the aircraft are
safely separated vertically during both horizontal conflict intervals.

This envelope introduces non-determinism in our model, the representation
of uncertain vertical motion in the future. Even though the limiting trajec-
tories of our envelope are piecewise polynomial and our dynamics are simple,
our dynamics are not limited to piecewise polynomial trajectories. This model
allows us to represent a continuous family of irregular trajectories within our
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acceleration limits, all of which travel within the envelope but which include
many different types of motion.

While the ownship’s upper and lower limiting trajectories issue from a single
point at time zero, the intruder’s upper and lower limiting trajectories bound a
range of altitudes, indicating the uncertainty in the intruder’s vertical position,
e.g., due to surveillance error.

Time intervals for this plot are subdivided so that each time interval con-
tains a single maneuver for each aircraft. Although, for a generic sequence of
maneuvers, time intervals corresponding to individual maneuvers for the ownship
and intruder will not agree, we can always subdivide maneuvers as necessary to
ensure that exactly one maneuver covers the full duration of the interval for both
ownship and intruder. This is possible because a single maneuver of duration d
and a sequence of identical (with regard to velocity and acceleration bounds)
maneuvers with durations d0, d1, d2, . . . , dn, such that

∑n
i=1 di = d encompass

exactly the same set of aircraft trajectories.

3 Modeling and Assumptions

Modeling Non-deterministic Vertical Maneuvers. Each vertical maneuver is
defined by a duration of time d the maneuver is in effect, and a range of vertical
velocities, [vmin, vmax]. During the maneuver, the pilot accelerates the aircraft
with the intention of bringing vertical velocity into the specified range. Acceler-
ation is non-deterministic, and each maneuver has a set of four limiting vertical
accelerations amin ≤ aa < 0 < ab ≤ amax. The subscripts a and b indicate
the maximum and minimum acceleration allowed when the aircraft is above and
below the target range of vertical velocities, respectively. During a maneuver, the
pilot can choose to follow any acceleration a(t), that is continuous, integrable,
and satisfies

∀t, (v(t) > vmax → amin ≤ a(t) ≤ aa)∧
(v(t) = vmax → amin ≤ a(t) ≤ 0)∧

(vmin < v(t) < vmax → amin ≤ a(t) ≤ amax)∧
(v(t) = vmin → 0 ≤ a(t) ≤ amax)∧
(v(t) < vmin → ab ≤ a(t) ≤ amax)

(4)

where v(t) =
∫ t

0
a(t)dt + v(0) is the velocity of the aircraft.

In the Coq formalization, we prove the following properties about pilot
behavior:

Theorem 1 (Pilot-model vertical compliance). The constraints on a(t)
given in Eq. 4 ensure that when the aircraft is below (above) the target range
of vertical velocities, it will accelerate towards it with acceleration ab (aa) until
it is within its bounds.

Theorem 2 (Pilot-model maintains vertical compliance). The constrai-
nts on a(t) given in Eq. 4 ensure that once the aircraft has entered the allowed
range of vertical velocities, the aircraft will stay within that range.
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There are sequences of maneuvers and certain geometries where it is impos-
sible for a pilot to follow Eq. 4 while maintaining continuous acceleration. For
example, compliance with one maneuver may require the pilot to increase vertical
velocity by maintaining a positive acceleration, which may abruptly change to a
requirement to decrease vertical velocity by maintaining negative acceleration,
at the beginning of the next maneuver. In this case there will be trajectories
with a(t) satisfying the requirements of the first maneuver that will have no
continuous extension to the second maneuver.

In order to ensure that any sequence of maneuvers individually satisfying
Eq. 4 can be followed while maintaining acceleration a(t) that is continuous (i.e.
has a derivative) everywhere, we introduce the concept of an auxiliary maneuver
for every pair of consecutive maneuvers. The auxiliary maneuver provides a finite
time window to allow acceleration to transition continuously from one maneuver
to the next, thus avoiding potential discontinuous changes in acceleration at
the boundary between maneuvers. This simple device dramatically simplifies
analysis by removing the need for additional restrictions that would otherwise
be necessary to enforce the global continuity of a(t).

Given a pair of maneuvers with target vertical velocity intervals [vmin, vmax]
and [wmin, wmax], and acceleration bounds amin ≤ aa < 0 < ab ≤ amax and
bmin ≤ ba < 0 < bb ≤ bmax, respectively, the matching auxiliary maneuver is
given by a target velocity interval [min(vmin, wmin),max(vmax, wmax)] and the
acceleration bounds are min(amin, bmin) ≤ max(aa, ba) < 0 < min(ab, bb) ≤
max(amax, bmax). The minimal duration of an auxiliary maneuver is bounded
below only by the limits on the derivative of the aircraft’s acceleration, sometimes
also referred to as jerk.

To simplify the formal safety proofs, we have chosen to assume that a(t)
is continuous – a natural assumption from the point of view of physics – and
treat auxiliary maneuvers as undistinguished from other maneuvers. The alter-
native would be to have done the safety proofs for a(t) that would be allowed to
become discontinuous at the beginning of each maneuver. However, we did not
pursue this approach since it is simultaneously less realistic and more difficult
to implement in Coq.

4 Vertical Safety Predicates

In this section, we develop formally-verified, quantifier-free predicates establish-
ing pairwise safety between two aircraft. We do this for arbitrary sequences
of vertical maneuvers, where both pilots are accelerating non-deterministically.
The predicates are also constructed in a modular fashion so they can be com-
posed with a separate analysis of horizontal motion to ensure overall safety of
an encounter.

Vertical Safety Predicates. To guarantee vertical separation between two air-
craft, we establish a bounding envelope that contains all altitudes reachable by
each aircraft for each sequential maneuver as a function of time. We then con-
struct a predicate that computes a bounding envelope for each aircraft separately
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according to the initial position of each, and ensures that the envelopes don’t
overlap during V , the vertical conflict intervals. We establish the safety of this
predicate via formal proofs in Coq.

The bounding envelope for a single aircraft executing a single maneuver
(Eq. 4) depends on the initial range of vertical positions and velocities of the
aircraft at the start of the maneuver as well as the maneuver velocity and accel-
eration bounds. In the time-altitude domain, edges of the bounding envelope
are given by the upper and lower limiting trajectories. These trajectories origi-
nate from the extremes of the initial velocity and position ranges, and follow the
extreme values of acceleration and velocity allowed by the maneuver. Specifically,
limiting trajectories have the following form

Jz(t) =

{(
a
2 t2 + v0t + z0

)
ẑ if 0 ≤ t < tr(

vtt − tr
(vt−v0)

2 + z0

)
ẑ if tr ≤ t

(5)

where v0 and z0 are the initial vertical velocity and position of the aircraft, vt is
the matching extreme of the velocity range of the maneuver, and tr = vt−v0

a is
the time when the limiting trajectory reaches the maneuver velocity range. So
we have

(vt, a) =
{

(vmax, aa) if v0 > vmax

(vmax, amax) if v0 ≤ vmax
(6)

for the upper limiting trajectory and

(vt, a) =
{

(vmin, amin) if v0 > vmin

(vmin, ab) if v0 ≤ vmin
(7)

for the lower limiting trajectory. In the Coq formalization, we prove

Theorem 3. An aircraft following an arbitrary trajectory satisfying the con-
straints of Eq. 4 remains within the altitude envelope bounded above and below
by limiting trajectories determined by Eqs. 5, 6 and 7.

Once upper and lower limiting trajectories are constructed we have an enve-
lope of altitudes over time reachable by a non-deterministically maneuvering
aircraft, with boundaries that are described piecewise by polynomials of at most
degree two.

So far, we have been describing the dynamics for one aircraft, but we can use
this model for each aircraft in the encounter, plotting reachable envelopes vs.
time, and allowing us to visualize the uncertainty in position and relationship
between aircrafts at each moment. Figure 3 provides a visual example of upper
and lower limiting trajectories for ownship (solid lines) and intruder (dashed
lines) aircraft.

To develop quantifier-free predicates that indicate the absence of vertical con-
flict for a pair of aircraft, we take the difference of their opposite limiting trajec-
tories (lower-upper and upper-lower), and then compute whether the resulting
polynomial is positive. Physically, this means the aircraft are safely separated.
We first define the predicate
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Γ ((A,B,C), tb, te) ≡ tb ≤ te →
(A > 0 ∧ ((0 ≤ D ∧ (R1 > te ∨ R2 < tb)) ∨ D < 0)∨

A < 0 ∧ (0 < D ∧ R2 < tb ∧ R1 > te)∨
A = 0 ∧ (B > 0 ∧ −C/B < tb ∨ B < 0 ∧ −C/B > te∨

B = 0 ∧ C > 0))

(8)

to compute whether an arbitrary polynomial At2 + Bt + C represented by the
vector of its coefficients (A,B,C) is positive over the interval [tb, te], where the
subscripts b and e represent the beginning and ending times of the interval. In
this predicate, we define D ≡ B2 − 4AC, R1 ≡ (−B−√

D)
2A , and R2 ≡ (−B+

√
D)

2A
– the expressions for the discriminant and roots of a quadratic. The predicate
is made of a disjunction of three clauses, which analyze the polynomial when
second order coefficient A is positive, zero, or negative. If A is non-zero there are
two cases corresponding to an upward, A > 0, or downward, A < 0, extending
parabola with at most two roots. If A = 0 the polynomial is linear with at most
one root. The rest of the logic compares the location of the roots with the end
points of the time interval [tb, te] and determines whether the curve is positive
in that interval. We formalize and prove the following theorem in Coq:

Theorem 4 (Safely separated second-order polynomial interval). The
predicate Γ ((A,B,C), tb, te) computes whether a polynomial At2 + Bt + C is
positive over the interval [tb, te].

Each limiting trajectory within each maneuver is a piecewise function com-
posed of at most two pieces: a quadratic piece, corresponding to the aircraft
accelerating toward the maneuver’s target velocity range, and a linear piece,
corresponding to the aircraft maintaining one of the extremal velocities in the
maneuver’s target velocity range. Either of these pieces could be missing depend-
ing on the state of the aircraft at the beginning of the maneuver and the maneu-
ver’s duration. We next define a predicate

Φ(Q1, L1, tt1, Q2, L2, tt2, tb, te) ≡
Γ (Q1 − Q2 − P, max(tb, 0),min(te, tt1, tt2))∧

Γ (L1 − L2 − P,max(tb, tt1, tt2), te)∧
(tt1 > tt2 →

Γ (Q1 − L2 − P,max(tb,min(tt1,tt2)),min(te,max(tt1, tt2))))∧
(tt1 < tt2 →

Γ (L1 − Q2 − P,max(tb, min(tt1, tt2)),min(te,max(tt1, tt2))))

(9)

to compute whether two limiting trajectories described by Q1, L1, and Q2, L2

are safely separated in interval [tb, te]. In this predicate, P = (0, 0, hp) and hp is
the half-height of the NMAC puck. Each Qi and Li is a 3-vector containing the
coefficients of the polynomials corresponding to the quadratic and linear pieces of
trajectory i, respectively. The times tt1 and tt2 are the times when each respective
trajectory transitions from one piece to the next. The predicate Φ computes the
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separation and determines whether it is adequate, (i.e. > hp) for all points in
the interval of interest, ensuring that the correct polynomial is used for each
trajectory at each point. Given that each limiting trajectory is composed of at
most two pieces, there are four possible combinations of polynomials that appear
in the analysis: (Q1, Q2), (Q1, L2), (L1, Q2), (L1, L2). Each of these possibilities
corresponds to one term of the conjunction in the definition of Φ. The predicate
Φ has four instances of Γ , since it establishes safety for the different pieces (linear
and quadratic) of a trajectory for an entire maneuver.

We formalize, and prove the following theorem in Coq:

Theorem 5 (Safely separated trajectory interval, above). The predicate

Φ((α1, β1, γ1), (δ1, ε1, ζ1), tt1, (α2, β2, γ2), (δ2, ε2, ζ2), tt2, te, tx) (10)

computes whether a trajectory

T1(t) =

{(
α1t

2 + β1t + γ1
)

0 ≤ t < tt1(
δ1t

2 + ε1t + ζ1
)

tt1 ≤ t
(11)

is safely separated and above trajectory

T2(t) =

{(
α2t

2 + β2t + γ2
)

0 ≤ t < tt2(
δ2t

2 + ε2t + ζ2
)

tt2 ≤ t
(12)

by a distance of hp over the interval [tb, te].

Consider an aircraft executing a sequence of m maneuvers, defined
by minimum and maximum velocity bounds ([vmin1, vmax1], [vmin2, vmax2], . . . ,
[vminm, vmaxm]), for durations (d1, d2, . . . , dm), each maneuver having an enve-
lope of possible trajectories bounded by Eq. 5. We define {tmi} as the
set of times that identify the start of each maneuver. We also assume
the aircraft have horizontal dynamics for which there are n time intervals
([te1, tx1], [te2, tx2], . . . , [ten, txn]) when the probability of horizontal conflict is
non-zero. For convenience, we compute a set of times (τmn, υmn) that are the
entry and exit times for conflict interval n, intersecting maneuver m, relative to
the starting time of the maneuver:

(τmn, υmn) =

⎧
⎪⎨

⎪⎩

(max(0, ten), min(d1, txn)) for m = 1
(
max(0, ten) −∑m−1

i=1 di, min(dm, txn −∑m−1
i=1 di)

)

for m > 1

(13)

For each aircraft there is an upper and lower bounding trajectory; each of these
bounding trajectories has a quadratic and a linear piece for each maneuver. We
define Q and L to be 3-dimensional vectors representing the quadratic and linear
parts of the bounding trajectory for a single maneuver and a single aircraft, and
the time tr to indicate when each limiting trajectory transitions between the
quadratic and linear pieces. Each of these quantities uses a superscript with a
tag to represent which aircraft (own or intruder), an up or down arrow indicat-
ing whether the bound is a trajectory that bounds the aircraft from above or
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below, respectively. Each variable also has a subscript index i that identifies the
maneuver it describes.

So collectively, QOwn↑
i , LOwn↑

i , and tOwn↑
ri represent the upper limiting trajec-

tory for the ownship for maneuver i, and QOwn↓
i , LOwn↓

i , and tOwn↓
ri to describe

the lower limiting trajectory for the ownship in the same way. These vectors
contain the second, first, and zeroth order coefficients from Eq. 5. So

QOwn↑
i ≡ (

a
2 , v0, z0

)
QOwn↓

i ≡ (
a
2 , v0, z0

)

LOwn↑
i ≡

(
0, vmaxi, z0 − (vmaxi−v0)

2

2a

)
LOwn↓
i ≡

(
0, vmini, z0 − (vmini−v0)

2

2a

)

tOwn↑
ri ≡ vmaxi−v0

a tOwn↓
ri ≡ vmini−v0

a

(14)

represents upper and lower bounding trajectories for the own-ship. The initial
conditions v0 and z0 are set so that velocity and position are continuous at the
boundary between the different maneuvers, and a is set according to Eqs. 6 and
7.

Similarly, we define QInt↑
i , LInt↑

i , tInt↑i , QInt↓
i , LInt↓

i , and tInt↓ri to describe the
upper and lower limiting trajectories of the intruder aircraft, replacing parame-
ters with the ones appropriate for that aircraft.

Finally, we define the predicate

Ψ =
∧

j∈{1,...,n}

⎛

⎝

⎛

⎝
∧

i∈{1,...,m}
Φ(QOwn↓

i , LOwn↓
i , tOwn↓

ri , QInt↑
i , LInt↑

i , tInt↑ri , τij , υij)

⎞

⎠∨
⎛

⎝
∧

i∈{1,...,m}
Φ(QInt↓

i , LInt↓
i , tInt↓ri , QOwn↑

i , LOwn↑
i , tOwn↑

ri , τij , υij)

⎞

⎠

⎞

⎠

(15)

that helps establish safety between aircraft during a series of horizontal con-
flict intervals, as they follow a series of maneuvers. Its construction mirrors the
following logic. An encounter is safe if each of its horizontal conflict intervals
is safe; the outer conjunction over j ensures safety for each interval. Each con-
flict interval is safe if either the own-ship is always safely above the intruder, or
vice versa; the left side and right side of the disjunction account for these two
possibilities. One aircraft is safely above the other if they are safely separated
during each of the maneuvers in the conflict interval; the inner conjunction over
i accounts for each maneuver. We formalize and prove the following theorem in
Coq:

Theorem 6 (Safely separated vertical trajectories). The predicate Ψ com-
putes whether a particular encounter is safe (i.e. collision-free) according to
Eq. 15, for n time intervals ([te1, tx1], [te2, tx2], . . . , [ten, txn]) during a sequence of
m maneuvers ([vmin1, vmax1], [vmin2, vmax2], . . . , [vminm, vmaxm]), with respective
durations given by (d1, d2, . . . , dm).
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5 Formalizing Guarantees

We used Coq to formalize our proofs for this work, and this had both advantages
and disadvantages compared with KeYmaera, which we had used previously. (A
version of KeYmaera with scripting capabilities was unavailable for use since the
system was between versions at the time of this work.) The immediate disadvan-
tages of this change were that we could not concisely express our system using
the specialized terms used for hybrid programs, and we did not have access to
the reasoning strategies made available in differential-dynamic logic (dL), since
presently there is no mechanization of dL in the Coq environment. Consequently,
we expressed our model in terms of the more general framework of inductive
constructions using higher order logic and Coq’s expressive system of depen-
dent types, and had to develop a set of lemmas about non-deterministic vertical
motion from scratch, using Coq’s Real library. The immediate advantage of this
change was access to the well-developed scripting and automation capabilities
of the relatively mature Coq environment, and the potential for integrating our
present work with proofs that reason about trajectories involving trigonometric
functions, as might be required for some types of non-deterministic horizontal
turning behavior.

6 Extending Safety Guarantees to ACAS X

Our initial objective was to use this predicate formally verify that whenever
possible, the system provided sequences of advice to the pilot that guaranteed
safety and absence of collision under our acceleration assumptions.

ACAS X’s complicated behavior is contained in a data structure that when
uncompressed more than five hundred megabytes in size. The table is an optimal
policy that minimizes costs associated with a Markov decision process represent-
ing the aircraft encounter. Reasoning about the table is challenging. There is
discretization in the MDP, undersampling in the state space, and the logic of
the table is related to optimizing a set of weights, whose relationship with actual
safety in the real world is not straightforward.

The approach we took to formal verification treats the logic as opaque.
Instead of creating a model of ACAS X that faithfully reproduces its details
and quirks and trying to load it into a prover, we instead focused on evaluat-
ing its behavior throughout the state space. We developed the model described
in Sect. 4, an independent logic for a collision-avoidance system that is safe-by-
design. We prove it to be safe everywhere, and extend proofs about its safety to
proofs about the safety of the real system. This extension is done via exploration
of the system’s state space, and comparison of the behavior at state points in
the table to the allowable range of geometrically safe behaviors identified by
our logic. The states in the table definitively determine the system’s behavior
in the continuous state space – the score function at off-table states are inter-
polated from the table’s values in a local neighborhood. To evaluate each state,
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our predicate evaluates the future possibilities, taking into account pilot non-
determinism, sensor noise, and delay in the system, using the envelopes we pre-
viously described, acceleration limets, and the parameters of the NMAC puck.
This approach makes it possible to do formal verification and draw conclusions
about ACAS X over the entirety of its state space, but also makes the logic
reusable for other collision avoidance systems.

To formally verify the system in its entirety with this approach, we would
need to do two things: first, we would run the logic over all of the table’s states,
and then we would have to develop guarantees about off-table points in the state
space. Proofs and reasoning would have to be developed to fill in the rest of the
state space after the table’s states were evaluated.

We ran an comprehensive evaluation of all the table’s states in an earlier
version of the system for straight-line trajectories. Our first comprehensive run
took nearly a month to set up and run on our local cluster, returned so many
examples of unsafe behavior that we had difficulty characterizing them. The
initial results were that we quickly proved the system was not safe, and identified
where. We almost immediately found areas where it gave unsafe advice, but
where advice was possible that would guarantee safety.

Since we had counterexamples that will not be resolved, we could not prove
safety comprehensively. At this point, we switched our focus from making com-
prehensive guarantees about the system’s behavior to making local guarantees
of safety or dangerous conditions, and characterizing the safety tradeoff made
during its design.

7 Application to ACAS X Coordination Logic

This section describes how the vertical safety predicate was used to evaluate
safety of ACAS X, for encounters where both aircraft are equipped with ACAS X
and are executing coordinated vertical safety maneuvers simultaneously. This
analysis was not possible earlier, because the previous framework we used [6,7]
was fundamentally limited to analyzing a non-accelerating intruder; even vertical
maneuvers for the intruder were not analyzable.

Using our new framework, we analyzed the advice generated by a prototype of
ACAS X on a subset of the system’s behavior table cut-points. We first collected
the advisories that ACAS X issues on the chosen state space samples by querying
ACAS X for both the ownship and intruder aircraft advisories.

The pilots of each aircraft are assumed to begin responding to an advisory
5 s after the first advisory is issued, and 3 s after each subsequent advisory.
The safety predicate Ψ is evaluated at each selected state point with the har-
vested advisories assigned to the ownship and intruder accordingly. The hori-
zontal motion model chosen here is the deterministic straight line model.

We called the state points where Ψ fails with the ACAS X advisories but
succeeds with another set of ownship and intruder advisories counterexamples.
A counterexample is a point in the state space where ACAS X issues advisories
that are not guaranteed to be safe according to Ψ but there are other advisories
that would guarantee safety. In the terminology of [6,7], Ψ is a safeable predicate.
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Fig. 4. An example NMAC found where the set of ACAS X advisories does not prevent
a close approach in altitude during the period where the aircraft are within 500 ft
horizontally, denoted by vertical dashed lines. Ownship and intruder trajectories are
shown in blue and red, respectively. (Color figure online)

Recall, that a state point advisory combination is safeable if it is safe or can
be made safe in the future by issuing additional advisories after a limited delay.

Of the 589,560 state points examined, 29,295 were identified as safeable coun-
terexamples. To identify the most dangerous state space configurations the safe-
able counterexample set was further run through full ACAS X simulations with
nominal trajectory accelerations set to zero. The result was a set of 3,301 state
points where the system issued advice that created NMACs.

Examining the above set of dangerous aircraft configurations in terms of their
state space coordinates, we observed a striking pattern—all of them had a low
or moderate horizontal closing speed of between 10 and 200 ft/s. In practice,
this means that the aircraft will remain in horizontal proximity for an extended
period of time. For example, at the horizontal closing rate of 100 ft/s it can take
the aircraft up to 10 s to clear the horizontal projection of the NMAC region.

Figure 4 shows conditions found by our analysis where ACAS X advice that
does not guarantee safety. The two aircraft follow nearly parallel horizontal paths
that cross at a very small angle (not shown). The intruder aircraft (red track)
descends rapidly at −8500 ft/min, while the ownship (blue track) descends at
a more moderate rate of −2500 ft/min. The dotted vertical lines indicate the
time interval during which the aircraft are within 500 ft of each other and,
hence, must maintain vertical separation of at least 100 ft to avoid NMAC.
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The resolution advisories issued by ACAS X—DO NOT DESCEND (DND) and
MAINTAIN VERTICAL SPEED (MAINTAIN), for the ownship and intruder
aircraft respectively – result in an NMAC at time 12 s. The dotted blue line
indicates the straight line continuation of the ownship trajectory that would
have occurred with no advisory. To guarantee safety, ACAS X could continue
to advise DO NOT DESCEND to the intruder, while advising the ownship to
MAINTAIN vertical velocity.

These results pointed to an important flaw in the system assumptions about
the possible range of durations of horizontal proximity. The problems stemming
from slow horizontal closing configurations are actively being addressed in the
final ACAS X system.

8 Related Work

Many efforts have explored developing correct and comprehensive guarantees
about collision avoidance decisions over a system’s state space. This paper
improves on these because it develops guaranteed geometric safety under more
realistic dynamics. The ACAS X system logic [8] is based on a policy that results
from optimizing a Markov Decision Process (MDP) using value iteration to min-
imize a set of costs; [2,10] analyze the state space of a similar MDP using proba-
bilistic model checking and an adaptive Monte Carlo tree search respectively, to
identify undesirable behavior. Collision avoidance algorithms are developed for
both horizontal and vertical motion in 3D in [13,14] for polynomial trajectories
with a finite time horizon, and formally verified with PVS. TCAS, the prede-
cessor for ACAS X. Its resolution advisories have been formalized in PVS. In
[12], the logic for TCAS is formalized in PVS and used to identify straight-line
encounter geometries that generate advisories in a noiseless environment.

There are a number of simulation approaches [1,5] that allow for more precise
description of dynamics than the present work. However are limited to evaluating
safety for a finite number of trajectories.

Prior efforts that match our dynamics as well as providing a formal proof
of safety can be found in [4,11,15,16]. All these use a hybrid system model
to develop safe horizontal maneuvers, unlike the present work which develops
vertical maneuvers, and is applied to a practical system.

The most closely related work is [6,7]. We retain the overall approach to
verification, very similar non-deterministic dynamics, and the idea of computing
reachable envelopes to make guarantees about a range of future possibilities. The
present work differs because it can analyze the safety of encounters with each air-
craft making independent sequences of non-deterministic maneuvers, including
acceleration, turns, and pilot delay. The proofs here are formalized in Coq.

9 Conclusion

This framework and the detailed vertical predicates offer a flexible approach
to a formally verified analysis of the safety of a collision avoidance system. It



352 Y. Kouskoulas et al.

relaxes restrictive assumptions about acceleration and horizontal motion and
allows us to ensure the safety of a wider variety of pilot behavior and ACAS X
system conditions than before. This analysis can ensure the safety of intrud-
ers that accelerate vertically, aircraft that make horizontal turns, coordinated
ACAS X advisories, and multi-threat encounters. Its flexibility extends, further,
to ensuring safe vertical motion in the presence of mixed horizontal and vertical
advisories.
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Rouff for their comments and technical discussion.

References

1. Chludzinski, B.J.: Evaluation of TCAS II version 7.1 using the FAA fast-time
encounter generator model. Technical report ATC-346, MIT Lincoln Laboratory
(2009)

2. Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision
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