
Towards a study of performance for
safe neural network training

Nishant Kheterpal1[0000−0001−5868−7843] and
Jean-Baptiste Jeannin2[0000−0001−6378−1447]

1 Robotics Institute, University of Michigan
nskh@umich.edu

2 Department of Aerospace Engineering, University of Michigan
jeannin@umich.edu

Abstract. Neural networks perform well in complex, data-driven tasks,
although guaranteeing their performance remains a challenge. Networks
that perform well on training and test sets are not guaranteed to general-
ize to unseen or untested settings; arbitrary behavior may occur. Despite
recent progress in verifying correctness properties of neural networks, it
is often unclear how to repair networks when a verifier finds a counterex-
ample. We present work in progress examining correct-by-construction
neural networks and the performance impact of guaranteeing safety dur-
ing training. Training a neural network amounts to exploring a high-
dimensional, non-convex parameter space to find the best-performing
point; we aim to study the impact of constraining such exploration dur-
ing training on convergence, training time, and the final loss. We propose
a study of safe training methods on the ACAS Xu neural network com-
pression task, for which explicit correctness properties have been stated.

Keywords: formal verification, neural network verification, reachability

1 Introduction

Considerable research attention has been directed towards the use of neural
networks due to their suitability for complex, data-driven tasks such as image
classification, generative modeling, or other decision-making tasks. However, the
universal function approximation characteristics of neural networks make it chal-
lenging to guarantee their performance. Generalization is not guaranteed, even
if a network performs well on a training or test set. In safety-critical domains,
such unintended behavior may cost lives or damage valuable equipment. As such,
verification for these systems is a key research area.

Recent progress has been made in verifying neural networks with abstract
interpretation [3]. Abstract domains like zonotopes, convex polytopes, and more
are used to verify invariant specifications in recent work such as PRIMA [14]. Due
to the complexity of neural networks and their applications, a performant verifier
will likely find counterexamples (cases where the network does not perform as



2 N. Kheterpal and J-B. Jeannin

intended), which must be addressed by retraining. However, it is not obvious
how to retrain and guarantee that the same counterexamples will not occur, or
that retraining will not introduce new counterexamples; after all, there is no
formal guarantee that training examples will all be classified correctly. We seek
to study how to guarantee correct behavior while integrating verifiers into the
training loop.

We are motivated to study this problem based on the following challenge:
training a neural network is a search problem in a high-dimensional vector space
over a non-convex surface, and constraining the search by enforcing safety likely
will impact performance. Unconstrained gradient descent methods may, for ex-
ample, escape local optima and discover more globally optimal parameters using
strategies like momentum [11]. However, if the network must satisfy safety prop-
erties throughout the entirety of training, the gradient steps may be limited to
a small domain of the loss landscape.

In the following section, we present a series of safe training approaches which
we aim to study using the ACAS Xu neural network compression task, a well-
studied benchmark for which formally verified safety properties have been stated
before [8,9]. This benchmark task provides clear input-output invariants that can
be propagated through the layers of the network using abstract interpretation
approaches and, correspondingly, used to constrain training to maintain safety
throughout. Note that enforcing “correct” behavior for neural networks is a
highly challenging task in which optimal performance may be computationally
infeasible due to high dimensionality, non-convexity with respect to training pa-
rameters, and problem complexity. We seek to ground this open-ended question
of safe training performance by beginning with a well-known benchmark task
that has been studied extensively in past work.

We propose to perform several safe training experiments to assess three ways
of constraining training to ensure the network takes safe actions. Two approaches
may not guarantee correct results or training may terminate early: the first
penalizes unsafety in the loss term and the second incorporates an “exploration
budget” into training. The third approach directly modifies the parameters of the
neural network during training using the intermediate representations computed
by a reachability-oriented verifier. We intend to comprehensively study which
properties were successfully verified and explore the impact of maintaining safety
during training on final performance metrics such as loss relative to the original
ACAS Xu lookup table.

1.1 ACAS Xu: A Case Study

The ACAS Xu collision avoidance system issues advisories to avoid near-misses
or mid-air collisions between two aircraft viewed from a top-down perspective;
as such advisories take forms like “Strong Left,” “Weak Right,” “Clear of Con-
flict,” and others. Correctness can be checked geometrically in this top-down
view: there are optimal advisories to maximally avoid a near-miss based on their
configuration. The original ACAS Xu system chooses advisories based on a large



Towards a study of performance for safe neural network training 3

lookup table ranking 5 actions over 120 million states, which can be computa-
tionally demanding to store on embedded settings found in the low-resourced
unmanned aircraft for which ACAS Xu is intended. Past work examined com-
pressing the lookup table by approximating it first with a single and then multi-
ple neural networks [8]. In the course of that work, those authors generated ex-
plicit verification conditions to check the correctness of the advisories generated
by their neural network. They found counterexamples for properties dictating,
for example, when the system should yield a “weak left” advisory, in which the
trained deep neural network failed to return the correct advisory [9].

1.2 Safe Training Approaches

We intend to study the performance of several approaches for safe training;
note that some approaches are heuristics that may not guarantee correctness.
Our goal in this work is to study the effectiveness of certain approaches to safe
training; as such, we will consider non-differentiable or heuristic approaches to
compare them to other approaches with stronger guarantees.

The first approach, the unsafety penalty, computes the distance from the
trained regions corresponding to each collision advisory to the verified safe re-
gions from past work; this distance is used as part of the loss function used to
train. Integrating correctness properties is the most naive approach, though also
the simplest. By penalizing the system for the severity of the deviation from the
verified region, the training process drives the neural network towards satisfying
the geometric properties referenced above. We aim to test a variety of penalty
weights and study the effect of the penalty on the performance of the fully
trained neural network. The differentiablity of our loss penalty is a challenge
here: such penalties must be implemented so that backpropagation can produce
gradients with respect to the network weights. We envision building, for example,
an interval domain analyzer in Tensorflow and run in the loop when computing
loss [1].

The second approach allows the neural network to yield unsafe actions during
portions of training, if it eventually converges to safety. Because the loss function
is highly nonconvex in the weights and biases of the neural network, there is no
guarantee that training will converge directly to optimal, safe behavior. As such,
our second tactic will deploy an “exploration budget”: a set number of training
iterations during which training may yield unsafe actions, like the “temperature”
parameter in simulated annealing. If the network violates safety properties after
the exploration budget is expended, training begins anew from the last safe
parameter set.

In our third safe training strategy, we aim to leverage verification tools that
iteratively propagate some safe input set (such as the conditions under which
some property of action choice holds) to directly adjust the parameters of the
neural network so it always yields correct outputs; by modifying the weights in
the final hidden layer, we can shift the output set to lie entirely within a safe
output range. There are numerous reachability-based verifiers, like DeepPoly,
PRIMA, and CROWN; we would like to study the relative performance of this



4 N. Kheterpal and J-B. Jeannin

correct-by-construction approach using multiple verifiers in the loop. We aim
to provide empirical results for the number of verified properties and trained
performance for each approach and over various parameter values, such as the
weighting of the unsafety penalty, and number of training iterations used as the
exploration budget.

Our second and third approaches modify weights outside of the usual opti-
mizer loop, which often includes momentum and other parameters. We aim to
empirically study the effects of optimizer parameters. For example, we will eval-
uate performance with and without resetting momentum in our second approach
when weights are modified. For our third approach, we may modify optimizer
parameters like learning rate schedules based on the relative magnitude of the
change made: if the weights are shifted by a large amount, we may raise the learn-
ing rate correspondingly, but small shifts may be better suited to lower learning
rates. We will study the performance both with and without these heuristics in
order to analyze their effectiveness.

1.3 Evaluation

Our experiments are still in progress, so the precise metrics we will use to mea-
sure performance remain uncertain. However, there are a few components of
performance with which we are concerned. The primary motivation of this work
is seeing whether constraining neural networks to be safe during training pre-
vents them from learning effectively — functionally, whether safety-constrained
gradient descent stays trapped in some initial configuration or fails to make
progress because it does not satisfy desired properties. As such, we intend to
examine the difference in loss compared to an unconstrained neural network.
Another natural performance metric is the number or percentage of properties
certified as correct, as this work is intended to study methods that guarantee
safety. Additionally, we want to study the additional computational burden of
running a verifier in the loop for each approach under consideration, and will
measure wall-clock time or some other metric for training time.

2 Related Work

Ensuring neural network safety or correctness is a highly open-ended task, and
the problem can be made arbitrarily challenging based on, for example, the choice
of safety properties, network dimension, benchmark task, and more. As such,
much past research has focused on the setting of robustness for neural networks,
where generalization properties can be more easily stated and proven. Motivated
by the challenge of adversarial attacks, in which imperceptible changes to neural
network inputs cause significant errors [19,7], tools for training provably robust
neural networks include DiffAI, which leverages an abstract interpretation ap-
proach inside the layers of the network itself using a zonotope domain [13,12];
CROWN [24] and its successor β-CROWN [21], which use linear or quadratic
functions to bound activation functions and provide a lower bound of distortion,



Towards a study of performance for safe neural network training 5

further improved to handle neuron split constraints; and other tools. Additional
work with CROWN leveraged interval bound propagation (IBP) and used sched-
ule hyperparameters that gradually traded off standard and robust loss terms
[23]. Small-scale networks with one hidden layer were studied in [15], and a pio-
neering paper in the field overapproximated activation functions and used linear
programming to perform robust optimization [22]. Many tools for robust opti-
mization and learning use custom loss functions to incentivize robustness. The
survey [5] provides an overview of approaches for learning under constraints;
the work covers input-output constraints of the sort studied for the ACAS Xu
benchmark task [9].

Our first approach, which penalizes unsafety, takes a similar approach but de-
fines penalties with respect to safety specifications (in the form of input-output
constraints, for example), rather than robustness specifications (regularizing,
say, around individual training examples). Differentiable logics may offer a way
to encode safety specifications into the loss term in a general fashion, and we
look forward to exploring them further [4,25]. Our third safe training strategy,
which modifies the weights of a neural network in order to adhere to a safety
specification, has similar goals to recent research into Provable Repair for ML
systems. Past work has explored the complexity of modifying weights to guar-
antee performance [6], which is NP-complete at worst but can be simplified to
a linear program if only the last layer is analyzed, as we do. The tools PRDNN
and APRNN perform Provable Repair and have been applied to some of the
ACAS Xu networks to repair violated counterexamples [18,20]. We aim to study
PRDNN and APRNN in our future work, though the tools have limits in their
input dimensionality.

There are several tools, like Reluplex [9], Marabou [10], PRIMA [14], ERAN
[16,17], and others, focused on verifying that a neural network obeys a specifi-
cation, in the form of invariants: inputs in some domain must produce outputs
in some range.

The ACAS Xu system is a case study of considerable interest to the neural
network community as a benchmark due to its formally verified safety properties;
for example, it was examined in a closed-loop control context and found to be
unsafe [2].

3 Future Work and Conclusion

Motivated by the challenge of ensuring neural networks obey verification proper-
ties, we have presented work in progress investigating the performance of three
approaches to safe training of neural networks. Because of the highly open-
ended nature of this problem, we focus on a benchmark task of interest to the
machine learning verification community: the ACAS Xu neural network compres-
sion task. We propose integrating reachability-focused verifiers into the training
loop to modify neural networks either via heuristic or direct manipulation of
parameters, and present a few metrics we intend to study in order to exam-
ine the performance of these approaches. We invite comments on our research



6 N. Kheterpal and J-B. Jeannin

objectives and approach, and look forward to engaging with the broader com-
munity focused on deploying machine learning systems with rigorous guarantees
in safety-critical contexts.

Acknowledgements. This work was funded in part by a NASA Fellowship.

References

1. Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, 2016.

2. Stanley Bak and Hoang-Dung Tran. Neural Network Compression of ACAS Xu
Early Prototype is Unsafe: Closed-Loop Verification through Quantized State
Backreachability. volume 13260, pages 280–298. 2022. arXiv:2201.06626 [cs, math].

3. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages - POPL ’77, pages 238–252, Los Angeles, California, 1977.
ACM Press.

4. Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang,
and Martin Vechev. DL2: Training and Querying Neural Networks with Logic.
In Proceedings of the 36th International Conference on Machine Learning, pages
1931–1941. PMLR, May 2019. ISSN: 2640-3498.

5. Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas Lukasiewicz. Deep
learning with logical constraints. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence. International Joint Conferences on Ar-
tificial Intelligence Organization, jul 2022.

6. Ben Goldberger, Guy Katz, Yossi Adi, and Joseph Keshet. Minimal Modifications
of Deep Neural Networks using Verification. pages 260–240, 2020.

7. Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples, March 2015. arXiv:1412.6572 [cs, stat].

8. Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J.
Kochenderfer. Policy compression for aircraft collision avoidance systems. In
2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pages 1–
10, Sacramento, CA, USA, September 2016. IEEE.

9. Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Re-
luplex: An Efficient SMT Solver for Verifying Deep Neural Networks, May 2017.
arXiv:1702.01135 [cs].

10. Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić,
David L. Dill, Mykel J. Kochenderfer, and Clark Barrett. The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks. In Isil Dillig and
Serdar Tasiran, editors, Computer Aided Verification, volume 11561, pages 443–
452. Springer International Publishing, Cham, 2019. Series Title: Lecture Notes in
Computer Science.



Towards a study of performance for safe neural network training 7

11. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization,
January 2017. arXiv:1412.6980 [cs].

12. Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable Abstract In-
terpretation for Provably Robust Neural Networks. In Proceedings of the 35th In-
ternational Conference on Machine Learning, pages 3578–3586. PMLR, July 2018.
ISSN: 2640-3498.

13. Matthew Mirman, Gagandeep Singh, and Martin Vechev. A Provable Defense for
Deep Residual Networks, January 2020. arXiv:1903.12519 [cs, stat].

14. Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and
Martin Vechev. PRIMA: General and Precise Neural Network Certification via
Scalable Convex Hull Approximations. Proceedings of the ACM on Programming
Languages, 6(POPL):1–33, January 2022. arXiv:2103.03638 [cs].

15. Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified Defenses against
Adversarial Examples, October 2020. arXiv:1801.09344 [cs].

16. Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
Vechev. Fast and Effective Robustness Certification. In Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

17. Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract
domain for certifying neural networks. Proceedings of the ACM on Programming
Languages, 3(POPL):1–30, January 2019.

18. Matthew Sotoudeh and Aditya V. Thakur. Provable repair of deep neural networks.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pages 588–603, Virtual Canada, June
2021. ACM.

19. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, February
2014. arXiv:1312.6199 [cs].

20. Zhe Tao, Stephanie Nawas, Jacqueline Mitchell, and Aditya V. Thakur.
Architecture-Preserving Provable Repair of Deep Neural Networks. Proceed-
ings of the ACM on Programming Languages, 7(PLDI):443–467, June 2023.
arXiv:2304.03496 [cs].

21. Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J. Zico Kolter. Beta-CROWN: Efficient Bound Propagation with Per-neuron Split
Constraints for Complete and Incomplete Neural Network Robustness Verification,
October 2021. arXiv:2103.06624 [cs, stat].

22. Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via
the convex outer adversarial polytope, June 2018. arXiv:1711.00851 [cs, math].

23. Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li,
Duane Boning, and Cho-Jui Hsieh. Towards Stable and Efficient Training of Ver-
ifiably Robust Neural Networks, November 2019. arXiv:1906.06316 [cs, stat].

24. Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Effi-
cient Neural Network Robustness Certification with General Activation Functions,
November 2018. arXiv:1811.00866 [cs, stat].

25. Natalia Ślusarz, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert Stewart,
and Kathrin Stark. Logic of Differentiable Logics: Towards a Uniform Semantics
of DL, May 2023. arXiv:2303.10650 [cs].


	Towards a study of performance forsafe neural network training

