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Abstract—At controlled airports, aircraft taxi on the ground
following precise instructions from Air Traffic Control. Those
instructions can get quite intricate and complicated and lead
to errors from Air Traffic Control or confusion from pilots,
especially at larger airports. In order to reduce the pilots’
workload and lower the risk of accidents from pilot error or
Air Traffic Control mistakes, it is desirable to automate taxiing
of aircraft.

One aspect of automated taxiing is to automatically find the
correct taxiway path from Air Traffic Control instructions. In this
paper, we implement and formally verify a taxiway path-finding
algorithm in the Coq proof assistant, and test it on three different
airports of various sizes (Ann Arbor, Willow Run and Detroit
Wayne). We first build an undirected airport taxiway graph
topology, extend it to a directed expanded graph, disallowing
some unrealistic paths such as U-turns, and formally encode the
two graphs into Coq types. We then implement the path-finding
algorithm on the directed expanded graph, and map downward
the result back to the undirected graph. We formally verify the
correctness of our algorithm in the Coq theorem prover.

Index Terms—verification, proof assistant, graph algorithms,
airport taxiway

I. INTRODUCTION

Automation has become widespread in commercial aircraft
over the past decades, but automation in ground operations
has not been widely implemented yet. The taxi instructions
provided to pilots by Air Traffic Control through radio voice
commands can lead to confusion, especially at major airports
with many taxiways. A pilot error could lead to taking the
wrong taxiway or crossing a runway without authorization,
leading to potential accidents. At the same time, Air Traffic
Control can make mistakes, and pilots must ensure that the
instructions correspond to a valid path on the airport taxiways
(i.e., the instructions are accurate) and that this path is unique
(i.e., the instructions are not ambiguous). If not, a pilot
would get back to Air Traffic Control requesting corrected
instructions.

In order to reduce the pilots’ workload on the ground, let
them focus on their flight, and reduce potential accidents, it
is desirable to automate taxiing of aircraft. Part of this task
is to generate a valid taxiway path from Air Traffic Control
instructions. Since the correctness of this path is safety-critical,
we would also like to verify that this path is correct with
respect to the instructions that were received.

The problem of avoiding runway incursions is the object
of many papers, including several surveys [1], [2]. Cheng et
al. [3] identify the importance and potential airport efficiency
improvements of an autonomous taxiing system. Liu and
Ferrari [4] present a vision-based self-taxiing approach in
which the airport is also modeled as a graph, similar to our
method. While their path-finding algorithm is similar to ours,
they do not attempt to formally verify it. On the other hand,
Fremont et al. [5] present a vision-based centerline-tracking
autonomous taxiing system and perform its formal analysis.
However, they focus on staying on a pre-determined taxiway
and do not deal with the path-finding step of determining the
correct taxi route. Julian et al. [6] investigate the problem of
validating vision-based neural network controllers. For these
types of controllers, formal verification is very difficult, so
they propose an alternative consisting of a combination of
adaptive stress testing and neural network verification tools.
Additionally, Lu et al. [7] present a self-learning approach to
autonomous taxiing, and Eaton and Chen [8] present an image-
based collision detection system for autonomous taxiing. Both
of these papers focus on following taxiways or avoiding
collisions using vision.

Formal verification can be used to ensure that an aerospace
system meets its specifications. This is important, as attempt-
ing to find errors in a system or software through standard
processes becomes more difficult as system complexity in-
creases. There are many examples of successful use of formal
methods to verify various aerospace systems, e.g., [9]–[12].
Formal verification on graphs or graph-based algorithms has
been investigated using different techniques, e.g., da Costa and
Ribeiro [13] and Kupferman [14].

In this paper, we use the Coq proof assistant [15] to for-
mally verify the correctness of an airport taxiway path-finding
algorithm. The algorithm takes as inputs an undirected graph
representing the map of the airport, start and end locations
represented as vertices of the graph, and Air Traffic Control
instructions consisting of a list of taxiway names. It outputs a
unique valid path, or an error if the path is either nonexistent
or not unique. At its heart, the path-finding algorithm is based
on a breadth-first search, modified and optimized to ensure that
we only follow valid paths corresponding to the instructions.
The formal verification is performed in the Coq theorem



prover, and consists of 2,400 lines of code including proofs.1

II. GRAPH ENCODING

A natural way to represent an airport ground layout is to
use an undirected graph G, setting the edges as the taxiway
branches and the vertices as the intersections. We follow the
naming convention described by Zhang et al. [16] for the
undirected graph. We use the names of taxiways to name the
vertices at the intersections of taxiways.

Let us take the Ann Arbor airport (KARB) as an example.
From its official airport taxi diagram (Fig. 1), we extract an
undirected graph (Fig. 2 [16, Fig. 3]), where vertex AB is
named from taxiway A and taxiway B (we do not consider
A2 which is a minor taxiway). We can simply represent the
edge as a pair of two vertices, for example (AB, AC) means
the edge between AB and AC.

One problem with the undirected graph representation is
that it allows illegal paths such as U-turns, which aircraft
cannot take in reality. In other words, the algorithm does not
remember from which taxiway the aircraft reached its current
position. For example in Fig. 2 [16, Fig. 3], if the aircraft is
currently at vertex AC and is ordered to go to AB by path-
finding on the undirected graph, we cannot know whether it
came from AA1 or BC. If it came from BC, some large
aircraft may not be able to make the tight turn toward AB.
For this reason, we expand the undirected graph into a directed
expanded graph. The directed expanded graph is similar to a
line graph [18], but with some slight modifications.

To avoid confusion, we refer to the elements of the undi-
rected graph as vertex and edge, while we use node and
arc for the directed expanded graph. A node in the directed
expanded graph encodes the current vertex in the undirected
graph along with the last vertex the aircraft came from.
Thus, a node in the directed expanded graph corresponds to
an edge in the undirected graph. Since the arc is directed
in the directed expanded graph, we use an ordered pair of
two nodes to represent an arc. For example, the arc (x, y)
means “from node x to node y”. Note that the node (x, y)
means “from y to x”, but arcs are encoded in the inverted
order. Thus the arc ((AC, BC), (AB, AC)) means that
the aircraft came from BC, is currently located at AC, and
is moving to AB. For clarity we denote such an arc as
((AC from BC) to (AB from AC)). Intuitively, an arc is
an ordered pair of (previous edge, current edge), and it
becomes an edge in the undirected graph if we drop the first
term. With the help of the directed expanded graph, we are
able to drop paths that are illegal in reality [16].

In our type definition, we further encode the taxiway name
into edges and arcs. The modified definition encodes the
taxiway names into each edge or arc, so we do not need to
search for the taxiway name in a global record each time. We
construct a pair with the first element as the original edge or
arc and the second element as the taxiway name. Formally, the

1Proofs are available at
https://github.com/rinshankaihou/pathway finding verification

Edge type requires a pair of two vertices and a taxiway name,
so an instance can be ((Ch, BC), C) where (Ch, BC) is
the original edge, and C is its taxiway name.

Formally, the type definition starts from two basic types,
Vertex representing vertices in the undirected graph and Taxi-
way type representing taxiway names. The rest of the types
are built through pairs of basic types or constructors of basic
types. The types of the directed expanded graph are encoded
in the Coq proof assistant as:

Node_Type := Vertex ∗ Vertex
Arc_Type := (Node_Type ∗ Node_Type) ∗ Taxiway_Type

C_Graph_Type := list Arc_Type

Note that we encode a graph as an ordered list of edges or
arcs, but allow repetition and ignore ordering so it represents
a set, because we only care about the inclusion relation of a
graph and its elements. A path in a graph is also a list of
edges or arcs, but adding repetition and reordering will make
it a different path, therefore we view it as an ordered list as
encoded.

Since we assign every component in the undirected or
directed expanded graphs a different type, the strong type
system of the Coq proof assistant ensures that we always pass
the right component to functions in our implementation.

In real airports, the taxiing path can only start from certain
places, which are represented by double circles in Fig. 2.
Therefore we need to restrict input vertices and nodes in our
graph. We have a special instance of the V ertex type, the
“input” vertex, in our design. We hardcode the “input” vertices
and add a unique extra edge pointing to legal input vertices
in the original undirected graph to identify input vertices. For
example, the pair ((Ch, input), “′′) is an edge instance in
the undirected graph saying that Ch is a input vertex. After
conversion to the directed expanded graph, we are able to
enforce the next arc to come from this extra input edge, such
as (((Ch, input), (BC, Ch)), C).

III. ALGORITHM

We divide the path finding algorithm into three parts. Our
algorithm is inspired by previous work [16] but modified in
key places to ease verification. The first part is an expanding
algorithm that turns an undirected graph into its associated
directed expanded graph. The second part finds all possible
paths on the directed expanded graph. Finally, we call a
downward mapping algorithm to turn the path in the directed
expanded graph to one in the undirected graph. One can
additionally modify the output of the expanding algorithm
from step 1 to specify all the paths that an aircraft can take
before executing the second part. The correctness properties
will still hold as long as the modified directed expanded graph
meets its specification, given in Section IV.

Although a graph and a path bear different properties
(the former is viewed the same after adding repetition or
reordering), our expanding and downward mapping algorithms
preserve ordering, so the input of these algorithms can be both
a graph and a path. This design is validated by the proof.



Fig. 1. Official Ann Arbor airport taxi diagram published by the Federal Aviation Administration [17]
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Fig. 2. undirected graph of Ann Arbor airport (KARB) from [16]

Before we step into the details of our algorithm, we first
introduce some symbol conventions we will use in the rest
parts of our paper, in the order of decreasing precedence.

s@n, the nth element of a tuple s,

including the state that will be introduced below
[a], a list containing only one element a

h :: l, a list constructed by appending h to the head of l
l1++l2, a list constructed by concatenating l2 at the end of l1

A. From Undirected to Directed Expanded

As stated above, the undirected graph has limitations when
dealing with illegal paths, so we start by expanding the undi-
rected graph to a directed expanded graph to allow encoding
of more constraints in the graph.

These constraints forbid, or filter out certain illegal paths
for an aircraft in the directed expanded graph, such as paths
containing a U-turn, which the undirected graph is unable to
encode. In our verified implementation the filter is an identity
map; i.e. the graph is not filtered. However we expect an
arbitrarily customized filter to preserve the correctness, as long
as the filter outputs a subset of the directed expanded graph.

DIRECTED-EXPANDED-GRAPH(UG)
Data: undirected graph UG = ( V,E)
Result: directed expanded graph DEG = ( N,A)
create DEG.A = [ ]
expand UG.E to bi-directional graph E′

foreach edge e ∈ E′ do
prev = [e′ ∈ E′, e.from= e′.to and e′.to6= input]

end
drop e′ ∈prev if e′ =inv e
foreach directed edge e′ ∈prev do

append ((e′.fst, e.fst), e.taxiway) to DEG.A
end
return DEG

Algorithm 1: Generation of directed expanded graph
(inspired from [16])



The undirected graph is encoded as a list of ordered vertex
couples, along with the name of the corresponding taxiway,
such as ((AC,AB), A) (Fig. 3), but the order does not matter
at this point. The undirected graph of Ann Arbor airport is
given in Fig. 2, and its directed expanded graph is given in
Fig. 5.

AB AC
A

undirected edge to bidirected edge

AB AC
A

AB AC
A

Fig. 3. A mapping from an undirected edge to bidirected edges.

The expansion algorithm has two steps. It starts by turning
each undirected edge into two directed edges. A directed
edge has the same encoding, except the order matters in
our algorithm. For example, in Fig. 3, ((AC,AB), A) is an
undirected edge between AB and AC on taxiway A, which
is expanded to (AC from AB) and (AB from AC), both on
taxiway A. Applying such an operation gives us the bidirected
graph. Since an airplane is not allowed to go to the “input”
vertex, we additionally filter out the edges with the form
“(( , input), )” in the bidirected graph.

Then for each directed edge in the bidirected graph, an
edge along with one of its previous edges describes a possible
path. Packing an edge, the taxiway name of that edge, and a
previous edge gives us an expanded arc. All the possible arcs
constitute the directed expanded graph. In Fig. 4, the directed
edge (AC from AB) has 3 previous edges, which results in 3
arcs: (((AB from BC) to (AC from AB)), A), etc. For each
edge in the bidirected graph, we find all possible previous
edges from the bidirected graph and construct the form. Since
the aircraft will never turn around and go back on the same
edge, we forbid the previous edge to be the inverse of current
edge, so an arc such as (((AB from AC) to (AC from AB)), A)
will not appear.

We complete the generation of the directed expanded graph
by repeating the operation described in Fig. 4 for every bidi-
rected edge. If we apply the expanding algorithm (Algorithm
1) to the Ann Arbor airport (Fig. 2), we get the directed
expanded graph as shown in Fig. 5.

Note that the idea of the expansion algorithm comes from
the directed expanded graph generation algorithm discussed
from [16, Algorithm 1]. However, the detailed design of our
Algorithm 1 is slightly different from theirs. The modification
results in shorter and clearer code in Coq and an easier proof.

B. Path-finding on Directed Expanded Graph

The algorithm find-path (Algorithm 2) takes a directed
expanded graph and an Air Traffic Control (ATC) command
as input, and outputs a list of all possible paths. Note that the
input graph is not necessarily the full graph generated by the
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Fig. 4. Expansion of an edge to an arc

expansion algorithm (Algorithm 1), as we can customize the
graph by filtering out illegal arcs. The filtering algorithm can
be arbitrarily customized, as long as the output is a subset of
the input graph.

The design of Algorithm 2 is again inspired from the
Path Finding: Auxiliary Recursive Algorithm proposed by [16,
Algorithm 2]. The idea is based on breadth-first search, where
in each iteration we step an arc further from the starting arc.
The modified algorithm is easier to implement in a functional
language such as Coq.

We introduce the structure state of State type to pack all
necessary information of a search state into one instance, and
all intermediate operations will be conducted on states in the
algorithm find-path.

State type := | State : (list Arc type)→ string→
(list string)→ (list string)

→ State type

A state should be constructed through the constructor State
along with four arguments, so it is essentially a 4-tuple. The
four arguments are

s@1 the list of history arcs we have come through to the
current position

s@2 the taxiway name of the current position
s@3 the remaining ATC commands we will deal with
s@4 the ATC commands we have used
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Fig. 5. Directed expanded graph of the taxiways at Ann Arbor airport (KARB) [16]

Note that the history arcs and the used ATC commands are
organized in reverse order in the list, because we append the
current arc/ATC command to the head of the list during each
step. An invariant of the state is that the initial ATC command
can always be recovered at any point. Formally, we write
the property as (rev s@4) ++ [s@2] ++ s@3 = ATC input,
meaning that the three parts in the state represent the used,
current, and future taxiway names in the ATC command. We
maintain the invariant by either doing nothing or taking a
new taxiway as current taxiway and appending the last current
taxiway to the history taxiways.

In the find-path algorithm (Algorithm 2), we start by pack-
ing the start vertex and ATC command into an initial state and
inserting the initial state into a queue. Then we repeat popping
and handling the first element of the queue until reaching a
pre-set maximal round or until the queue is empty. For each
state, we first filter all arcs in the graph that start from the
current position, and then check whether the taxiway name of
each remaining arc is the same as the current taxiway or the
next taxiway in the ATC command. Either condition means
we can go one step further on the arc, so we create a new
state keeping the invariant, and push the new state into the
queue.

Note that we have a pre-set bound for maximal steps
bound. The bound for maximal steps is only used to explicitly
ensure that the program will terminate. The aim of introducing
the bound for maximal steps is to make it easier to prove
correctness, which will be discussed later.

C. Downward Map back to Undirected Graph
The find-path algorithm (Algorithm 2) returns a list of paths

in the directed expanded graph, and each path is a list of arcs.
In order to have a more natural representation, we map a path
consisting of arcs to a path with edges. Luckily, an arc contains
every necessary piece of information to reform an edge, and
we call the map from Arc type to Edge type a “downward
map”.

AB
from BC

AC
from AB

A

BC AB AB AC
A

recover edge from arc

AB AC
A

Fig. 6. Downward Map from an Arc to an Edge

In the expansion algorithm (Algorithm 1), we attach a
previous edge to an edge to form an arc. Hence sim-
ply dropping the previous edge recovers the edge. For
example, in Fig. 6, dropping the first half of the arc
(((AB from BC) to (AC from AB)), A) gives the original edge
((AC from AB), A). Applying this operation to all arcs in the



FIND-PATH(DEG, ATC, start_v, end_v)
Data: directed expanded graph DEG = ( N, A : list Arc type), ATC command ATC: list Taxiway type, start

vertex start_v: V ertex, end vertex end_v: V ertex
Result: a list of all possible paths DEp: list list Arc type
create DEp= [ ]
set a proper bound for maximal steps bound, default is 100
set the initial state init=State [(((start_v, input), (start_v, input)), head(ATC))] head(ATC) rest(ATC) [ ]
create queue= [init]
for 1 to bound do

foreach s ∈queue when the iteration starts do
pop s from queue
// check if endpoint reached
if head(s@1).to node.to =end_v && length(s@3) = 0 then

append (rev s@1) to DEp
end
// find all arcs starting from current position
create next_arcs= [a ∈ DEG.A if a.from node = head(s@1).to node ]
// pack arcs with correct taxiway name into a state and append to queue
foreach a ∈next_arcs do

// next arc is on the current taxiway in ATC command
if a.taxiway = s@2 then

push (State (a :: s@1) s@2 s@3 s@4) to queue
end
// next arc is on the next taxiway in ATC command
if s@3 6= [ ] && a.taxiway = head(s@3) then

push (State (a :: s@1) s@2 (tail(s@3)) (s@2 :: s@4)) to queue
end

end
end

end
return DEp

Algorithm 2: Find-path on directed expanded graph (modified from [16])

path gives a path of edges, which is described in Algorithm
3. This is also the final output of the entire path-finding
algorithm.

DOWNWARD-MAP(DEp)
Data: a list of paths DEp : list list Arc type
Result: a list of paths Up: list list Edge type
create Up= [ ]
foreach al ∈DEp do

create p = [ ]
foreach a ∈ al do

append (a.to node, a.taxiway) to p
end
append p to Up

end
return Up

Algorithm 3: Downward map from arcs to edges

As stated before, the expansion and downward-map algo-
rithms work on both graphs and paths, so we do not distinguish

the input, and we denote the expansion function as to C

(as in to complete representation), downward-map function
as to N (as in to naive representation). Then the path finding
algorithm can be described as

to N ◦ find-path ◦ to C

.

IV. CORRECTNESS

At the highest level, the correctness of our algorithm means
that for every path we find, the output path is a correct path
for the input. Since our algorithm is a combination of three
separate parts, we modularize our proof accordingly. We first
prove the correctness of the find-path algorithm (Algorithm 2)
on an arbitrary directed expanded graph, then we prove that
the correctness is preserved with the downward-map algorithm
(Algorithm 3) from arcs to edges, i.e. to N ◦ find-path
is correct. Lastly we prove the entire algorithm is correct.
We further prove the expansion algorithm (Algorithm 1) and
the downward-map algorithm (Algorithm 3) are correct, i.e.
to C ◦ to N is an identity map under certain conditions,



therefore it behaves very similar to one’s intuition. The last
property complements the correctness definition because other-
wise, some absurd implementations of the expansion algorithm
(Algorithm 1) and the downward-map algorithm (Algorithm
3) may still make the entire algorithm satisfy our correctness
definition. This will be discussed in detail.

As shown in the proof logic illustration (Fig. 7), we ulti-
mately want to prove that the undirected path “path(edge)” we
find is correct given the “undirected graph”. Intuitively, it is
hard to define the correctness of the expanding algorithm (Al-
gorithm 1) and determine how the correctness can contribute
to the correctness of the combined algorithm, hence we start
with the correctness of find-path algorithm (Algorithm 2) on
the directed expanded graph.

Instead of taking the expanding algorithm (Algorithm 1)
into consideration at this point, we prove the correctness
of find-path to hold for not only the output of to_N but
all directed expanded graphs. In Fig. 7, the correctness for
find-path algorithm (Algorithm 2) states that “path(arc)” is
correct given some “directed expanded graph”. Then we prove
the downward preservation property of the correctness when
the downward map algorithm (Algorithm 3) is applied to
both the path and the corresponding graph: the correctness
of the find-path algorithm (Algorithm 2) is preserved by
the downward map algorithm, i.e., “path(arc)” is correct on
“directed expanded graph” indicates “path(edge)” is correct on
“UG′” in Fig. 7. Note that we can only determine whether a
path is correct based on the exact graph input to the algorithm.
Hence, the theorem that the “path(edge)” is correct on “UG′”
is not strong enough to support the correctness of the theorem
that “path(edge)” is correct on “undirected graph”. The goal
now is changed to showing that a path is correct on the graph
created by applying the downward map (Algorithm 3) after
applying the expanding map (Algorithm 1) to some undirected
graph indicates the path is correct on the undirected graph.
Formally,

∀ p G,

correct p (to N (to C G))→ correct p G

where to N and to C represent the downward map (Algorithm
3) and the expanding map (Algorithm 1), respectively. Alter-
natively, we focus on the identity of the two maps to prove
the goal. The identity describes the property that if an edge is
either in a graph G (under some reasonable specification) or
(to N (to C G)), then the edge should also be in the other
graph. By the correctness of find-path in Sec. IV-A, correctness
preservation in Sec. IV-B, and identity of two maps in Sec.
IV-D, we finish the proof for the correctness at the highest
level that “path(edge)” is correct on “undirected graph” as
illustrated in Fig. 7.

We will see that the correctness of the find-path algorithm
(Algorithm 2) does not depend on the input graph, so find-
path on a filtered graph is trivially correct, and although
this is left as future work, we expect the correctness to be
trivially preserved with any kind of filter. The correctness of

our algorithm is discussed under the condition that the filter
is an identity map as shown in Fig. 7, so in the following
sections the filter can be safely ignored.

A. Find-path Correctness

The first part of the correctness proof states that for every
path with list Arc type, the find-path algorithm (Algorithm 2)
returns, the path is a correct path based on the directed
expanded graph. We claim that a path is correct if it satisfies:
• The path starts at the correct node indicated by start v.
• The path ends at the correct node indicated by end v.
• Every arc in the path is an arc in the directed expanded

graph.
• The path is a connected path, i.e. the “to node” of an arc

in the path is always equal to the “from node” of the arc
of the next position in the path.

• The path follows the ATC command. The taxiway names
of the arcs should be of the form [ATC+

1 ATC+
2 ATC+

3 . . .],
where ATCi is the ith element in the ATC command, and
a + superscript refers to being repeated one or more times
as in regular expressions.

The intuitive way to prove this part is by induction on the
bound for maximal steps counting down to zero in the find-
path Algorithm 2. However, it is unwise to prove by induction
on the bound for maximal steps because our algorithm will not
convert a state to a path and add to the result list until the state
reaches the endpoint. If there is a new path added to the result
list in exactly the bound round, the induction hypothesis is
useless to prove that the new path is also correct.

Alternatively, we prove by the invariant of states. The state
invariant can be derived from the algorithm in Sec. III-B,
which describes the property of a state s generated by s′ in
an iteration where:
• s@1 inherits all arcs from s′@1 and has one more arc

than s′@1, i.e. s@1 = a :: s′@1 for the a point to current
position.

• (rev s@4) ++ [s@2] ++ s@3 is always equal to the
input ATC command, where (rev s@4) is s@4, a list of
the used ATC command, in reversed order.

The intermediate data structure used in the find-path algorithm
is the State type, and in each iteration we pop some states
and append some new states. In our implementation, we call
the function “step states” to generate new states, stepping
one edge farther from the current state. The state invariant
ensures that some properties of the new states generated (by
“step states”) in this iteration are correct if the properties hold
for the given state. In other words, the properties of a state
are invariant through each iteration (on “step states”).

With the state invariant, we can change the proof of the cor-
rectness for the output result to the proof that the correctness
holds and is kept on an arbitrary state s as follows:
• The last arc (due to the reverse order) in s@1 is always

the arc indicated by start v.
This can be proved by proving the initial state starts from
the correct arc and the arc is inherited through iterations.
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Fig. 7. Proving logic of the correctness. The black arrows mean “generate”, and “UG′” is the undirected graph generated by applying the downward map
algorithm (Algorithm 3) after the expanding map algorithm (Algorithm 1) to the input “undirected graph”. The blue lines mean the pair of components we
determine correctness on. For example, we determine whether “path(edge)” is correct based on graph “UG′”, which is proved by downward preservation in
Sec. IV-B. The “filter” operation is any function that generates a subset of the directed expanded graph without harming the correctness, including an identity
map dropping nothing.

• The head of s@1 is always the arc pointing to the current
position, and the last position iterated is the correct
position.
This property can be directly derived from the state
invariant and the end check condition.

• Any arc a appended to s@1 during iterations is always
in the directed expanded graph . The state invariant tells
us that we append an arc to s@1 each time, and by
hypothesis we can assume the existing arcs in s@1 are
in the graph.

• Any arc a appended to s@1 during iterations is connected
to the last current arc head(s@1) in the graph.
Similarly, the invariant tells us that we can assume that
s@1 is connected, hence we prove that the connected
property is kept.

• If the path to current position recorded in a state s follows
the ATC command recorded in s, then for any state s′

generated from s, the statement holds.
This property is much more complicated than the other
four because it involves both the path and the ATC
command, so we need to use all state invariant properties.
First notice that (rev s@4) ++s@2 is the corresponding
ATC command for the path from the start position to the
current position. We want to prove that the reverse of s@1
(the path to current position) always follows the partial
ATC command (rev s@4) ++s@2, which we call “partial
follow ATC”. We prove the “partial follow ATC” property
by state invariant and then prove that s@3 (unused ATC)
should always be empty when the state is converted to
the output path. This means we have used all of the ATC
command so that the output path follows the complete
ATC command.

The state invariant properties are like the inductive hypoth-
esis on the steps we search in the graph. We generalize the
bound for maximal steps so that the state invariant properties
are not restricted by some specific iteration. Hereby we
solve the problem raised in our attempt of induction on the
bound. With the state invariant and the derived properties, we
can prove the correctness of find-path easily like a normal

induction.

B. Downward Preservation

As illustrated in Fig. 7, the downward preservation says that
if the “path(arc)” is correct on the “directed expanded graph”,
then the “path(edge)” is correct on the graph “UG′”. Formally,
we can write the downward preservation as

∀ (p : list Arc type) G,

correct p G→ correct∗ (to N p) (to N G)

where to N is the downward map. Note that we use correct∗

for downward correctness because we should rewrite the
correctness theorem for Edge type instead of Arc type due
to the type constraint of Coq. We divide downward correctness
into five sub-statements corresponding to those of correctness.

Most of the properties are proved by solely investigating
the invariants of Algorithm 3, except the connectedness prop-
erty, which requires an additional condition that the input
expanded graph fed to Algorithm 2 consists of legal arcs.
Intuitively, a “legal” arc is one for which the head of its
previous edge meets the tail of its current edge. For an arc
((V 1 from V 2), (V 3 from V 4), recall that ((V 1 from V 2) is
the previous edge, and (V 3 from V 4) is the current edge the
airplane is on, therefore we call an arc legal if V 1 = V 4.
In addition, we proved that the expanded graph given by
Algorithm 1 contains only legal arcs, and that the arcs of any
output from Algorithm 2 come from the input graph, therefore
Algorithm 2 only outputs a legal path if the expanded graph
is a subset of one that is generated by Algorithm 1.

C. Correctness of path finding

Finally, we can prove the correctness of the entire path
finding algorithm.

Downward preservation, i.e. (to N ◦ find-path) working
correctly on any directed expanded graph implies it also works
on (to C◦UG) for some undirected graph UG. Therefore the
correctness properties of (to C ◦ find-path ◦ to N◦UG) are
automatic if user input UG does not appear in the conclusion.
There is one last property that does not fall into this category,



which states that every edge in the output of the path finding
algorithm comes from the input graph UG. More specifically,
they come from the bidirected version of UG, because our
undirected graph is a list of directed edges, and conceptually
each edge represents itself and its reverse in the bidirected
graph. If we view a path as a set, as the order has little
importance here, with slight abuse of notation the property
can be written as

(to N ◦ path) ⊆ (to bidirect UG)

where path is returned by find-path ◦ to C ◦ UG, and
to bidirect converts UG to its bidirected version. Downward
preservation of correctness of find-path implies that, if a
path(edge) is returned by find-path,

(to N ◦ path) ⊆ (to N ◦ to C ◦ UG)

It appears that we only need a lemma of the following form:

∀ G, (to N ◦ to C ◦ G) ⊆ (to bidirect G),

which is very easy to prove. This lemma says that to N and
to C preserve information in the input graph to some extent,
and we will discuss more in the following section.

At this point, we conclude the correctness of the path-
finding algorithm.

D. Identity and Correctness of to N and to C

Although we proved the correctness of the algorithm, we
still need evidence to support the correctness of to N and
to C. An extreme example is that, if we change the imple-
mentation of to C to let it always return an empty list, then
it is obvious that the correctness properties of the algorithm
are vacuously true. This is due to to C losing information
about the graph. The strongest property that one desires is
completeness, i.e. the algorithm returns all correct paths. But
the proof is beyond the scope of this work. Instead, we prove
that to N ◦ to C is “almost” an identity map.

We have seen that

∀ G, (to N ◦ to C ◦ G) ⊆ (to bidirect G)

from the previous section, if we view a graph as a set and
ignore the ordering of its elements. One would expect the
inverse to be true, so that to N and to C perfectly preserve
information of the input graph:

(to N ◦ to C ◦ G) = (to bidirect G)

. However that is not the case. The inverse is true only if
additional constraints are present:

∀e ∈ G,

(G has no self loop)∧
(∃p e ∈ (to bidirect G), p e is a previous edge of e)∧
(e is not an input edge) =⇒
e ∈ (to N ◦ to C ◦G).

This theorem says that an edge in an undirected graph G is
also in (to N ◦ to C ◦G) if:

• G has no self loop
• There is a previous edge p e of e in the bidirected version

of G. This proves the existence of an arc corresponding
to e in to C ◦ G, hence e is recovered when applying
to N to that arc. This condition is necessary, otherwise
e is an obsolete path and thus has no previous edge to
form an arc with.

• e is not an input edge, i.e., it does not start nor end at
the input vertex. This is also necessary, as to C does not
generate arcs corresponding to an edge that ends at input
vertex; and an edge starting from input vertex does not
have a previous edge.

These conditions are very easily met by most of the edges
in a real airport. Therefore we conclude that to N and to C

preserves information of the input graph to a good extent, and
the implementation of these algorithms are desired. However,
this proof does not justify the completeness of the entire
algorithm, which is beyond the scope of this paper.

V. DISCUSSION

A. Generality

The correctness of our algorithm is guaranteed by our proofs
in Coq, so the algorithm can be generally applied on arbitrary
airports besides KARB (Ann Arbor airport). We use KARB in
this paper mainly for introductory purpose, namely showing
what we’re doing in each step and providing an intuitive
understanding of the correctness of our propositions. We also
successfully ran our algorithm on bigger airports such as
KYIP (Willow Run Airport) and KDTW (Detroit Metropolitan
Wayne County Airport, a large international airport).

B. Limitations

1) Completeness: We only proved the soundness of our
algorithm, i.e. the algorithm only outputs correct paths from
the input. We have not proved completeness, i.e. that the
algorithm outputs every correct path, and we leave this proof
for future work.

2) Recursion Step Bound: One weakness of our implemen-
tation is the introduction of a hard-coded bound of maximal
recursion steps in the find-path algorithm Algorithm 2. Coq
requires every recursive function to be well-founded, for which
the bound is the evidence. Having this bound potentially limits
the result to exclude long paths. But real airports are relatively
small compared to the computation capacity of computers,
hence a sufficiently large bound would not cause problems
in real usage. We proved that the number of recursion steps is
equal to the length of s@1, the traveled arcs, so the value of
the bound is provably the maximal allowed path length. We
set the default value to 100, which is enough for most airports.
In real cases, the ATC command won’t give instructions to go
in circles, so the aircraft goes through every edge at most one
time. It means the aircraft will traverse the airport after |E|
round of iteration, while |E| means the number of edges in
the undirected graph encoding of the airport. Setting the round
bound to |E| is quite safe but unnecessary, because the ATC



command will definitely not instruct the aircraft to such an
extreme path.

One way to get rid of the bound is to provide more
sophisticated evidence that the function is well-founded. We
give a proof sketch but leave the actual proof to future work.
Each step of the find-path algorithm Algorithm 2 either adds a
new edge from the current taxiway or from the next taxiway.
If one sticks to a single taxiway name, since one cannot take
the previous edge as the next edge, the algorithm traverses
the same taxiway in the same direction; and if no taxiway
forms a loop, the algorithm will eventually reach an end of
this taxiway. Therefore, before moving on to the next taxiway,
it takes L steps at most, where L is the length of the longest
taxiway. Additionally, the ATC command has a finite number
of taxiway names, thus the maximum number of recursion
steps is also finite.

3) Performance: The algorithm is designed to be proof-
friendly, and as discussed before, the input in reality is small,
hence performance is not an important factor. Additionally,
pruning happens rapidly in reality, since one can only take
the current taxiway or move to the next specified taxiway, and
the latter is relatively rare. Informally, this makes the time
complexity close to O(L) where L is the length of the ATC
command, instead of exponential in L for a normal breadth-
first search algorithm. Redundant data can also be removed.
The purpose of s@4 for a state s, which denotes the used
ATC commands, is to simplify the proof, but it has little
effect on the algorithm’s behavior. Writing a new algorithm
without these redundancies with a proof of their isomorphism
can improve the space complexity.

C. Lessons Learned

We modularized the algorithm and the proof, making them
easy to fix and rewrite. The nature of Coq does not give us
much freedom to refactor the code, and some legacy problems
such as suboptimal data structures and confusing logic remain.
Some proofs of some theorems were duplicated during the
development process.

Powerful automation such as algorithm specific tactics,
setoid rewriting and the hammer tactic [19] made the proof
easier and more concise.
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