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Abstract. We present a side by side comparison of Capsules and Clo-
sures, including a proof of bisimilarity, using small-step semantics. A
similar proof was presented in [8], using big-step semantics. However,
while big-step semantics only allow to talk about final results of termi-
nating computations, the use of small-step semantics allows to prove a
stronger bisimilarity involving every step of the computation and thus
also applicable to infinite computations.

1 Introduction

This paper compares the use of Capsules and Closures for a language with both
higher-order and imperative features, and using small-step semantics. Capsules,
introduced in [9], are a simple way of modeling the state of a computation for
languages that are both imperative and functional. The state of a computation
has been studied extensively [1,2,6,7,12–16,20,21]. However capsules intend to be
as simple as possible, using only a single environment, while still capturing lexical
scoping, variable assignment and recursion without heaps, stacks or combinators,
and only using simple types.

The first versions of Lisp implemented dynamic scoping, which did not follow
the semantics of the λ-calculus based on β-reduction. The language Scheme [22]
fixed this by introducing closures, which allow to correctly model static scoping.
The idea behind closures is to keep with each λ–abstraction the environment in
which it was declared, thus forming a closure and allowing to execute the body
of the λ-abstraction in the correct environment.

The language we introduce is both functional and imperative: it has higher-order
functions, but every variable is mutable. This leads to interesting interactions and
allows to go further than just enforcing lexical scoping. In particular, what do we
expect the result of an expression like (let x = 1 in let f = λy.x in x := 2; f0) to
be? Scheme (using set! for :=) and OCaml (using references) answer 2. Capsules
give a rigorous mathematical definition that agrees and conservatively extends
the scoping rules of the λ-calculus. Our semantics of closures also agrees with
this definition, but this requires introducing a level of indirection, with both a
stack of environments and a store, à la ML. Finally, recursive definitions are



often implemented using some sort of backpatching; we build this directly into
the definition of the language by defining let rec x = d in e as a syntactic sugar for
let x = a in x := d; e, where a is any expression of the appropriate type.

There is much previous work on reasoning about references and local state;
see [11, 17–19]. State is typically modeled by some form of heap from which
storage locations can be allocated and deallocated [7,15,20,21]. Others have used
game semantics to reason about local state [4,5,10]. Mason and Talcott [12–14]
and Felleisen and Hieb [6] present a semantics based on a heap and storage
locations. A key difference is that Felleisen and Hieb’s semantics is based on
continuations. Finally, Moggi [16] proposed monads, which can be used to model
state and are implemented in Haskell.

This paper is an improvement over [8] and borrows most of its structure, as
we prove the same kind of result. Here we use small-step semantics instead of
big-step semantics, which allows to prove bisimilar even infinite computations.
The language and the notations are the same. The intended semantics of the lan-
guage, both using capsules and closures, is the same as well, even though we have
not formally proven the big-step and the small-step versions equivalent.

This paper is organized as follows. In Sect. 2, we formally introduce a program-
ming language based on the λ-calculus containing both functional and imperative
features. In Sect. 3, we describe two semantics for this language, one based on
capsules and the other on closures. In Sect. 4, we show a very strong correspon-
dence (Theorems 1 and 2, Corollary 1) between the two semantics, showing that
every computation in the semantics of capsules is bisimilar to a computation in
the semantics of closures, and vice-versa. We finish with a discussion in Sect.
5.

2 Syntax

2.1 Expressions

Expressions Exp = {d, e, a, b, . . .} contain both functional and imperative fea-
tures. There is an unlimited supply of variables x, y, z, . . . of all (simple) types,
as well as constants f, c, . . . for primitive values. () is the only constant of type
unit, and true and false are the only two constants of type bool. In the examples,
0, 1, 2, . . . are predefined constants of type int. In addition, there are functional
features

– λ-abstraction λx.e

– application (d e),

imperative features

– assignment x := e
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– composition d; e

– conditional if b then d else e

– while loop while b do e,

and syntactic sugars

– let x = d in e (λx.e) d

– let rec x = d in e let x = a in x := d; e

where a is any expression of the appropriate type.

Let Var be the set of variables, Const the set of constants, and λ-Abs the set of
λ-abstractions. Given an expression e, let FV(e) denote the set of free variables
of e. Given a partial function h : Var ⇀ Var such that FV(e) ⊆ domh, let h(e)
be the expression e where every instance of a free variable x ∈ FV(e) has been
replaced by the variable h(x). As usual, given two partial functions g and h,
g ◦ h denotes their composition such that for all x, g ◦ h(x) = g(h(x)). Given a
function h, we write h[x/v] the function such that h[x/v](y) = h(y) for y 6= x
and h[x/v](x) = v. Given an expression e, we write e[x/y] the expression e where
all free occurrences of x have been replaced by y.

Throughout the paper, we focus on the features directly involving variables:
variable calls x, λ-abstractions λx.e, applications (d e) where d reduces to a
λ-abstraction, and assignment x := e. Most differences between capsules and
closures arise using these features.

2.2 Types

Types α, β, . . . are built inductively from an unspecified family of base types,
including at least unit and bool, and a type constructor → such that functions
with input type α and return type β have type α → β. All constants c of the
language have a type type(c); by convention, we use c for a constant of a base
type and f for a constant of a functional type. We follow [23] in assuming that
each variable x is associated with a unique type type(x), that could for example
be built into the variable name. Γ is a type environment, a partial function
Var ⇀ Type. As is standard, we write Γ, x : α for the typing environment Γ
where x has been bound or rebound to α. The typing rules are standard:

Γ ` c : α if type(c) = α Γ, x : α ` x : α
type(x) = α Γ, x : α ` e : β

Γ ` λx.e : α→ β

Γ ` d : α→ β Γ ` e : α

Γ ` (d e) : β

Γ ` x : α Γ ` e : α

Γ ` x := e : unit

Γ ` d : unit Γ ` e : α

Γ ` d; e : α

Γ ` b : bool Γ ` d : α Γ ` e : α

Γ ` if b then d else e : α

Γ ` b : bool Γ ` e : unit

Γ ` while b do e : unit
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3 Semantics

We present two different semantics that have a strong correspondence:

– The semantics on capsules is a simplified version of the semantics on closure
structures introduced in [3]. It has previously been described in [9];

– The semantics on closures is the semantics usually used and taught for func-
tional languages. A level of indirection for variables has been added to sup-
port imperative features, à la ML. Developing a small-step semantics for
closures ended up being a little bit more complicated than expected.

From now on all the expressions we consider are supposed well-typed with the
rules of Sect. 2.2.

3.1 Capsules

Definitions An irreducible term is either a constant or a λ-abstraction. A cap-
sule environment γ is a partial function from variables to irreducible terms, such
that

∀x ∈ dom γ, FV(γ(x)) ⊆ dom γ

.

Let i, j, k, . . . denote irreducible terms and γ, δ, ζ, η, . . . capsule environments.
Let Irred = Const + λ-Abs be the set of irreducible terms. Thus we have:

γ : Var ⇀ Irred Irred = Const + λ-Abs

Semantics A capsule is a pair 〈e, γ〉, such that FV(e) ⊆ dom γ.

Let us define a small step semantics where the operator →ca relates capsules.
The semantics of features directly involving variables is given by:

〈x, γ〉 →ca 〈γ(x), γ〉 〈y := i, γ〉 →ca 〈(), γ[y/i]〉
〈(λx.b) i, γ〉 →ca 〈b[x/y], γ[y/i]〉 (y fresh)

and the remaining semantics is:

〈f c, γ〉 →ca 〈f(c), γ〉 〈(); e, γ〉 →ca 〈e, γ〉
〈if true then d else e, γ〉 →ca 〈d, γ〉 〈if false then d else e, γ〉 →ca 〈e, γ〉

〈while b do e, γ〉 →ca 〈if b then (e;while b do e) else (), γ〉

Evaluation contexts C are defined by:

C ::= [ · ] | C e | i C | x := C | C; e | if C then d else e
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where each evaluation context C[ · ] generates a rule:

〈d, γ〉 →ca 〈e, δ〉
〈C[d], γ〉 →ca 〈C[e], δ〉

The well-typed final capsules, i.e. capsules that cannot take a small step, are
exactly the capsules 〈i, γ〉 for any irreducible term i.

As usual, we introduce →∗ca as the reflexive transitive closure of →ca.

Examples The following examples show that lexical scoping and recursion are
handled.

Example 1. (let x = 1 in let f = λy.x in let x = 2 in f 0)→∗ca 1

Proof.

〈 let x = 1 in let f = λy.x in let x = 2 in f 0, [ ] 〉
→ca 〈 let f = λy.x′ in let x = 2 in f 0, [x′ = 1] 〉
→ca 〈 let x = 2 in f ′ 0, [x′ = 1, f ′ = λy.x′] 〉
→ca 〈 f ′ 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉
→ca 〈 (λy.x′) 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉
→ca 〈 x′, [x′ = 1, f ′ = λy.x′, x′′ = 2, y′ = 0] 〉
→ca 〈 1, [x′ = 1, f ′ = λy.x′, x′′ = 2, y′ = 0] 〉

Example 2. (let x = 1 in let f = λy.x in x := 2; f 0)→∗ca 2

Proof.

〈 let x = 1 in let f = λy.x in x := 2; f 0, [ ] 〉
→ca 〈 let f = λy.x′ in x′ := 2; f 0, [x′ = 1] 〉
→ca 〈 x′ := 2; f ′ 0, [x′ = 1, f ′ = λy.x′] 〉
→∗ca 〈 f ′ 0, [x′ = 2, f ′ = λy.x′] 〉
→ca 〈 (λy.x′) 0, [x′ = 2, f ′ = λy.x′] 〉
→ca 〈 x′, [x′ = 2, f ′ = λy.x′, y′ = 0] 〉
→ca 〈 2, [x′ = 2, f ′ = λy.x′, y′ = 0] 〉

Example 3. (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3)→∗ca 6
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Proof. In this example e stands for λn.if n = 0 then 1 else f(n− 1)× n.

〈 let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3, [ ] 〉
→∗ca 〈 f 3, [f = λn.if n = 0 then 1 else f(n− 1)× n] 〉
→∗ca 〈 if n1 = 0 then 1 else f(n1 − 1)× n1, [f = e, n1 = 3] 〉
→∗ca 〈 (f 2)× n1, [f = e, n1 = 3] 〉
→∗ca 〈 (if n2 = 0 then 1 else n2 × f(n2 − 1))× n1, [f = e, n1 = 3, n2 = 2] 〉
→∗ca 〈 (f 1)× n2 × n1, [f = e, n1 = 3, n2 = 2] 〉
→∗ca 〈 (if n3 = 0 then 1 else n3 × f(n3 − 1))× n2 × n1,

[f = e, n1 = 3, n2 = 2, n3 = 1] 〉
→∗ca 〈 (f 0)× n3 × n2 × n1, [f = e, n1 = 3, n2 = 2, n3 = 3] 〉
→∗ca 〈 (if n4 = 0 then 1 else n4 × f(n4 − 1))× n3 × n2 × n1,

[f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉
→∗ca 〈 1× n3 × n2 × n1, [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉
→∗ca 〈 6, [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉

3.2 Closures

Definitions Closures were introduced in the language Scheme [22]. We present
a version of them using a level of indirection, allowing us to handle mutable
variables.

There is an unlimited number of locations `, `1, `2 . . .; locations can be thought of
as addresses in memory. An environment is a partial function from variables to
locations. A closure is defined as a pair {λx.e, σ} such that FV(λx.e) ⊆ domσ,
where λx.e is a λ-abstraction and σ is an environment that is used to interpret
the free variables of λx.e. A value is either a constant or a closure. Values for
closures play the same role as irreducible terms for capsules. A store (or memory)
is a partial function from locations to values.

Let u, v, w, . . . denote values, σ, τ, . . . environments and µ, ν, ξ, χ, . . . stores. Let
Val be the set of values, Loc the set of locations and Cl the set of closures. Thus
we have:

σ : Var ⇀ Loc µ : Loc⇀ Val Val = Const + Cl

The interaction of small-step semantics and closures leads to using stacks of en-
vironments: when entering the body of a function, the environment coming with
its closure is pushed; and when leaving this body, it is popped. Let Σ,Π, . . .
denote stacks of environments. Let us write [σ] the stack of environments con-
taining only the element σ, as to not confuse it with the single environment σ.
σ :: τ represents the stack containing σ at the top of the stack and τ at its
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bottom. σ :: Σ represents the stack Σ with σ added on top of it; and Σ :: σ
represents Σ with σ added at its bottom. We define hd(Σ) = σ and tl(Σ) = Π
whenever Σ = σ :: Π.

To define a small-step semantics of closures, we need to represent all the different
shapes an expression can take throughout computation, until it becomes a value.
State expressions StExp = {s, t, . . .} allow to do this. Of course, expressions and
values are state expressions, but some state expressions are neither.

Exp ⊆ StExp Val ⊆ StExp

A state expression can be:

– an expression e; this includes constants c;

– a closure {λx.a, σ};

– an evaluation expression followed by a pop indicator �, as in s �; when
entering the body of a function, a new environment needs to be pushed
on the stack of environments; this environment needs to be popped when
leaving the body of the function; one way to know when this happens is to
keep track of the end of the body with �;

– an evaluation expression applied to an expression, s e;

– a value applied to an evaluation expression, v s;

– an assignment, x := s;

– a composition s; e;

– an if statement if s then d else e.

We extend the notion of free variables to an evaluation expression in a natu-
ral, syntactic way: for a well-formed closure {λx.a, σ} with FV(λx.a) ⊆ domσ,
FV({λx.a, σ}) is the empty set; and FV(s �) = FV(s).

Stacks of environments, along with the introduction of closures and of the pop
indicator �, are a convenient way to model in which environment each variable
should be looked up. Intuitively, any free variable in a λ-abstraction of a closure
should be interpreted in the environment coming with this closure. Because of
the definition of state expressions, the pop indicators all are inside each other.
The variables inside the deepest pop indicator are interpreted in the environment
on top the stack; the variables inside the second deepest but outside the deepest
pop indicator are interpreted in the second environment from the top of the
stack, and so on. The variables outside of any pop indicator are interpreted in
the environment at the bottom of the stack. A precise account of this idea will
be given in Sect. 4.1 with the definition of h ◦Σ.

7



Semantics A state is a triple (s, Σ, µ).

FV(s) ⊆ dom (hdΣ) ∀σ ∈ Σ, codomσ ⊆ domµ

∀{λx.a, τ} ∈ codomµ, FV(λx.a) ⊆ dom τ ∧ codom τ ⊆ domµ

When evaluating an expression e, we start with the initial state (e, [σ], µ) where
σ and µ are both empty mappings. Let us define a small step semantics where
the operator →cl relates valid states to valid results. The semantics of features
directly involving variables is given by:

(x, [σ], µ)→cl (µ(σ(x)), [σ], µ) (λx.a, [σ], µ)→cl ({λx.a, σ}, [σ], µ)

({λx.a, σ} v, [τ ], µ)→cl (a �, σ[x/`] :: τ, µ[`/v]) (` fresh)

(v �, σ :: τ, µ)→cl (v, [τ ], µ) (x := v, [σ], µ)→cl ((), [σ], µ[σ(x)/v])

and the remaining semantics is:

(f c, [σ], µ)→cl (f(c), [σ], µ) ((); e, [σ], µ)→cl (e, [σ], µ)

(if true then d else e, [σ], µ)→cl (d, [σ], µ)

(if false then d else e, [σ], µ)→cl (e, [σ], µ)

(while b do e, [σ], µ)→cl (if b then (e;while b do e) else (), [σ], µ)

Evaluation contexts C are defined by:

C ::= [ · ] | C e | v C | x := C | C; e | if C then d else e

where each evaluation context C[ · ] generates a rule:

(s, Σ, µ)→cl (t, Π, ν)

(C[s], Σ, µ)→cl (C[t], Π, ν)

One more rule is needed to be able to evaluate under a pop indicator �:

(s, Σ, µ)→cl (t, Π, ν)

(s �, Σ :: σ, µ)→cl (t �, Π :: σ, ν)

Note the similarity between the last two rules, including the definition of evalua-
tion contexts, and the inductive definition of state environments. This is not by
chance: the innermost state expression, if not a value, is always the one which
will be evaluated next.

The final states, i.e., the states that cannot take a small step, are the (v,Σ, µ)
for any value v.

As usual, we introduce →∗cl as the reflexive transitive closure of →cl.

8



Properties Some properties of this semantics can be easily proved:

– In an evaluation expression s, all the pop indicators � are inside each other;
the deepest one is inside all the others, and so on.

– If starting from an initial state, the number of elements on the environment
stack Σ is always one more than the number of pop indicators � in s.

– if Σ →cl Π then either Σ = Π or Σ = σ :: Π or σ :: Σ = Π for some σ.

Examples To illustrate the above semantics, we now show the evaluation of
the examples of section 3.1 using closures.

Example 4. (let x = 1 in let f = λy.x in let x = 2 in f 0)→∗cl 1
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Proof.

〈 let x = 1 in let f = λy.x in let x = 2 in f 0, [ ], [ ] 〉
→cl 〈 {λx.let f = λy.x in let x = 2 in f 0, [ ]} 1, [ ], [ ] 〉
→cl 〈 let f = λy.x in let x = 2 in f 0 �, [x = `1] :: [ ], [`1 = 1] 〉
→cl 〈 {λf.let x = 2 in f 0, [x = `1]} λy.x �, [x = `1] :: [ ], [`1 = 1] 〉
→cl 〈 {λf.let x = 2 in f 0, [x = `1]} {λy.x, [x = `1]} �, [x = `1] :: [ ],

[`1 = 1] 〉
→cl 〈 let x = 2 in f 0 � �, [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}] 〉
→cl 〈 {λx.f 0, [x = `1, f = `2]} 2 � �, [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}] 〉
→cl 〈 f 0 � � �, [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2] 〉
→cl 〈 {λy.x, [x = `1]} 0 � � �,

[f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2] 〉
→cl 〈 x � � � �,

[x = `1, y = `4] :: [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉
→cl 〈 1 � � � �,

[x = `1, y = `4] :: [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉
→cl 〈 1 � � �, [f = `2, x = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉
→cl 〈 1 � �, [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉
→cl 〈 1 �, [x = `1] :: [ ], [`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉
→cl 〈 1, [ ], [`1 = 1, `2 = {λy.x, [x = `1]}, `3 = 2, `4 = 0] 〉

Example 5. (let x = 1 in let f = λy.x in x := 2; f 0)→∗cl 2
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Proof.

〈 let x = 1 in let f = λy.x in x := 2; f 0, [ ], [ ] 〉
→cl 〈 {λx.let f = λy.x in x := 2; f 0, [ ]} 1, [ ], [ ] 〉
→cl 〈 let f = λy.x in x := 2; f 0 �, [x = `1] :: [ ], [`1 = 1] 〉
→cl 〈 {λf.x := 2; f 0, [x = `1]} λy.x �, [x = `1] :: [ ], [`1 = 1] 〉
→cl 〈 {λf.x := 2; f 0, [x = `1]} {λy.x, [x = `1]} �, [x = `1] :: [ ], [`1 = 1] 〉
→cl 〈 x := 2; f 0 � �, [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 1, `2 = {λy.x, [x = `1]}] 〉
→∗cl 〈 f 0 � �, [x = `1, f = `2] :: [x = `1] :: [ ], [`1 = 2, `2 = {λy.x, [x = `1]}] 〉
→cl 〈 {λy.x, [x = `1]} 0 � �, [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 2, `2 = {λy.x, [x = `1]}] 〉
→cl 〈 x � � �, [x = `1, y = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉
→cl 〈 2 � � �, [x = `1, y = `3] :: [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉
→cl 〈 2 � �, [x = `1, f = `2] :: [x = `1] :: [ ],

[`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉
→cl 〈 2 �, [x = `1] :: [ ], [`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉
→cl 〈 2, [ ], [`1 = 2, `2 = {λy.x, [x = `1]}, `3 = 0] 〉

Example 6. (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3)→∗cl 6

Proof. This example is particularly interesting as it shows how nested � allow
to interpret the same variable in different scopes. In all the example e stands for
{λn.if n = 0 then 1 else f(n − 1) × n, [f = `1]}, and d stands for {λn.n, [ ]}, a
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dummy value used when creating the recursive function f .

〈 let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3, [ ], [ ] 〉
→∗cl 〈 f := λn.if n = 0 then 1 else f(n− 1)× n; f 3 �, [f = `1] :: [ ], [`1 = d] 〉
→∗cl 〈 f 3 �, [f = `1] :: [ ], [`1 = e] 〉
→∗cl 〈 if n = 0 then 1 else f(n− 1)× n � �, [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3] 〉
→∗cl 〈 (f 2)× n � �, [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3] 〉
→∗cl 〈 (if n = 0 then 1 else n× f(n− 1) �)× n � �,

[f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2] 〉
→∗cl 〈 ((f 1)× n �)× n � �, [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2] 〉
→∗cl 〈 ((if n = 0 then 1 else n× f(n− 1) �)× n �)× n � �,

[f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2, `4 = 1] 〉
→∗cl 〈 (((f 0)× n �)× n �)× n � �,

[f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2, `4 = 1] 〉
→∗cl 〈 (((if n = 0 then 1 else n× f(n− 1) �)× n �)× n �)× n � �,

[f = `1, n = `5] :: [f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] ::

[f = `1] :: [ ], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
→cl 〈 (((if 0 = 0 then 1 else n× f(n− 1) �)× n �)× n �)× n � �,

[f = `1, n = `5] :: [f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] ::

[f = `1] :: [ ], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
→cl 〈 (((1 �)× n �)× n �)× n � �,

[f = `1, n = `5] :: [f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] ::

[f = `1] :: [ ], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
→cl 〈 ((1× n �)× n �)× n � �,

[f = `1, n = `4] :: [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
→∗cl 〈 ((1× 1)× n �)× n � �, [f = `1, n = `3] :: [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
→∗cl 〈 ((1× 1)× 2)× n � �, [f = `1, n = `2] :: [f = `1] :: [ ],

[`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
→∗cl 〈 6, [ ], [`1 = e, `2 = 3, `3 = 2, `4 = 1, `5 = 0] 〉
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4 Equivalence of the small-step semantics

4.1 Definitions

There is a very strong correspondence between the semantics of closures and
capsules. To give a precise account of this correspondence, we introduce an in-
jective partial function h : Loc⇀ Var with which we define three relations. Each
relation is between an element of the semantics of closures and an element of
the semantics of capsules that play similar roles:

– v
h→ i between values and irreducible terms;

– µ
h→ γ between stores and capsule environments;

– (s, Σ, µ)
h∼ 〈e, γ〉 between states and capsules;

One thing to notice is that nothing in the semantics of capsules plays the same
role as the stack of environments Σ in the semantics of closures: capsule envi-
ronments γ relate to memories µ, and the stack of environments Σ has been
simplified. Let us now give precise definitions of those relations.

Definition 1. Given a value v and an irreducible term i, we say that h trans-

forms v into i, where h is an injective map h : Loc ⇀ Var, and we write v
h→ i,

if and only if:

– v = i when v ∈ Const, or

– codom τ ⊆ domh and (h ◦ τ)(λx.a) = i when v = {λx.a, τ} ∈ Cl

Definition 2. Given a store µ and a capsule environment γ, we say that h
transforms µ into γ, where h is an injective map h : Loc ⇀ Var, and we write

µ
h→ γ, if and only if:

domh = domµ h(domµ) = dom γ

∀` ∈ domµ, µ(`)
h→ γ(h(`))

We are now ready to give a precise account of the interpretation of variables in
state environments, as described in Sect. 3.2. Given a map h : Loc⇀ Var and a
stack of environments Σ, let us inductively define the operator h ◦Σ : StExp→
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Exp as:

h ◦ (Σ :: σ)(e) = h ◦ σ(e)

h ◦Σ({λx.a, σ}) = σ(λx.a)

h ◦ (Σ :: σ)(s �) = h ◦Σ(s)

h ◦Σ(s e) = (h ◦Σ(s)) (h ◦Σ(e))

h ◦Σ(v s) = (h ◦Σ(v)) (h ◦Σ(s))

h ◦ (Σ :: σ)(x := s) = (h ◦ σ(x)) := h ◦ (Σ :: σ)(s)

h ◦Σ(s; e) = h ◦Σ(s);h ◦Σ(e)

h ◦Σ(if s then d else e) = if h ◦Σ(s) then h ◦Σ(d) else h ◦Σ(e)

Definition 3. Given a state (s, Σ, µ) and a capsule 〈e, γ〉, both valid, we say
that they are bisimilar under h, where h is an injective map h : Loc⇀ Var, and

we write (s, Σ, µ)
h∼ 〈e, γ〉, if and only if

h ◦Σ(s) = e µ
h→ γ

4.2 Soundness of Capsules with respect to Closures

Now that we know how to relate each element of both semantics, Theorem 1
shows that any derivation using closures mirrors zero or more derivation steps
using capsules, and Theorem 2 shows that any derivation step using capsules
mirrors zero or more derivation steps using closures. Combined, they give rise
to Corollary 1, which shows that any derivation using capsules is mirrored by a
derivation using closures, and vice-versa.

Theorem 1. If (s, Σ, µ)
h∼ 〈d, γ〉 and (s, Σ, µ)→cl (t, Π, ν), then there exists

e, δ such that

〈d, γ〉 →∗ca 〈e, δ〉 (t, Π, ν)
g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Theorem 2. If (s, Σ, µ)
h∼ 〈d, γ〉 and 〈d, γ〉 →ca 〈e, δ〉, then there exists t,Π, ν

such that

(s, Σ, µ)→∗cl (t, Π, ν) (t, Π, ν)
g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Corollary 1. If (s, Σ, µ)
h∼ 〈d, γ〉 then

14



– if (s, Σ, µ)→∗cl (t, Π, ν) then there exists e, δ such that

〈d, γ〉 →∗ca 〈e, δ〉 (t, Π, ν)
g∼ 〈e, δ〉

– if 〈d, γ〉 →∗ca 〈e, δ〉 then there exists t,Π, ν such that

(s, Σ, µ)→∗cl (t, Π, ν) (t, Π, ν)
g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Proof of Corollary 1. We use standard arguments on weak bisimilarity. The
first part is proved by recurrence on the number of steps of the derivation of
(s, Σ, µ)→∗cl (t, Π, ν) and application of Theorem 1. Similarly, the second part
is by recurrence on the number of steps of 〈d, γ〉 →∗ca 〈e, δ〉 and application of
Theorem 2. ut

Proof of Theorem 1. We proceed by induction on the derivation of (s, Σ, µ)→cl

(t, Π, ν). In the interest of space, we only show the most interesting cases of
the induction in the main text: variable call x, λ-abstraction λx.e, function
application of a closure {λx.a, σ} v, popping from the environment stack v �,
variable assignment x := e, contexts C[s] and computing with the pop indicator
s �. The other cases, function application of a constant function f c, composition
d; e, if conditional if b then d else e and while loop while b do e, are straightforward
inductive arguments.

Variable call If s = x for some variable x and Σ = [σ] then d = (h ◦ σ)(s) = y
with y the variable such that y = (h ◦ σ)(x).

By definition of →cl, (t, Π, ν) = (µ(σ(x)), [σ], µ), and by definition of →ca,

〈d, γ〉 = 〈y, γ〉 →ca 〈γ(y), γ〉. Moreover µ
h→ γ, therefore by definition of

h→,

µ(σ(x))
h→ γ(h(σ(x))) = γ(y). Therefore, with g = h, (t, Π, ν) = (µ(σ(x)), [σ], µ)

g∼
〈γ(y), γ〉 which completes this case.

λ-Abstraction If s = λx.a and Σ = [σ], then d = (h ◦ σ)(λx.a) which is a term
α-equivalent to s, so d = λx.b for some b. Indeed, the variable x does not change
from s to d since only the free variables of s are affected by h ◦ σ.

By definition of →cl, (t, Π, ν) = ({λx.a, σ}, [σ], µ), and by reflexivity of →∗ca,
〈d, γ〉 = 〈λx.b, γ〉 →∗ca 〈λx.b, γ〉. But codomσ ⊆ domh and λx.b = (h◦σ)(λx.a),

therefore {λx.a, σ} h→ λx.b. Moreover we know µ
h→ γ and with g = h, we get

({λx.a, σ}, [σ], µ)
g∼ 〈λx.b, γ〉 which completes this case.

Function application of a closure If s = {λx.a, σ} v and Σ = [τ ], then (h ◦
Σ)({λx.a, σ}) = (h ◦ σ)(λx.a) is a λx.b for some expression b, and (h ◦Σ)(v) is
some irreducible term i. Since d = (h ◦Σ)(s), d = (λx.b) i.
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By definition of →cl, (t, Π, ν) = (a �, σ[x/`] :: τ, µ[`/v]) with ` fresh, and by
definition of →ca, 〈d, γ〉 →ca 〈b[x/y], γ[y/i]〉, with y fresh. Let g : Loc ⇀ Var
such that:

g : domh ∪ {`} → codom g ∪ {y}
`h ∈ domh 7→ h(`h)

` 7→ y

Lemma 1. (a, [σ[x/`]], µ[`/v])
g∼ 〈b[x/y], γ[y/i]〉

Proof. First of all, λx.b = (h ◦ σ)(λx.a), g is an extension of h and FV(λx.a) ⊆
domh, therefore λx.b = (g ◦ σ)(λx.a). Now b[x/y] = ((g ◦ σ)[x/y])(a) = (g ◦
σ[x/`])(λx.a) since g(`) = y.

We further need to argue that µ[`/v]
g→ γ[y/i]. We already know that dom g =

domh ∪ {`} = domµ ∪ {`} = domµ[`/v], and g(domµ[`/v]) = codomh ∪
{y} = dom γ[y/i]. Let `′ ∈ domµ[`/v]. If `′ ∈ domµ, then µ[`/v](`′) = µ(`′)

h→
γ(g(`′)) = γ[y/i](g(`′)) by injectivity of g, therefore µ[`/v](`′)

g→ γ[y/i](g(`′)).

Otherwise, `′ = ` and then µ[`/v](`) = v
h→ i = γ[y/i](y) = γ[y/i](g(`)),

therefore since g is an extension of h, µ[`/v](`)
g→ γ[y/i](g(`)). This completes

the proof of the lemma.

Using lemma 1, we get that (g ◦ [σ[x/`]])(a) = b[x/y] and µ[`/v]
g→ γ[y/i]. But

g ◦ (σ[x/`] :: τ)(a �) = (g ◦ [σ[x/`]])(a), therefore (a �, σ[x/`] :: τ, µ[`/v])
g→

γ[y/i], which completes this case.

Popping from the environment stack If s = v � for some value v and Σ = σ :: τ ,
then d = (h ◦ Σ)(v �) = (h ◦ Σ)(v), which is an irreducible term i such that

v
h→ i, since:

– if v is a constant c, i = (h ◦Σ)(c) = c;

– if v is a closure {λx.a, σ′}, i = (h ◦ Σ)({λx.a, σ′}) = (h ◦ σ′)(λx.a) and
codomσ′ ⊆ domh.

By definition of →cl, (t, Π, ν) = (v, [τ ], µ), and by reflexivity of →∗ca, 〈d, γ〉 =
〈i, γ〉 →∗ca 〈i, γ〉. But i = (h ◦ Σ(v)) does not depend on Σ, therefore i =

(h ◦ [τ ])(v). Moreover we know µ
h→ γ and with g = h, we get (v, [τ ], µ)

g∼ 〈i, γ〉
which completes this case.

Variable assignment If s = (x := v) for some variable x and value v and Σ = [σ],
then d = (h ◦ Σ)(x := v) = (y := i) with y a variable such that y = (h ◦ σ)(x)

and i = (h ◦Σ)(v). Therefore (v, σ, µ)
h∼ 〈i, γ〉.

By definition of →cl, (s, Π, ν) = ((), [σ], µ[σ(x)/v]), and by definition of →ca,
〈d, γ〉 = 〈y := i, γ〉 = 〈(), γ[y/i]〉. The following lemma completes this case.
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Lemma 2. ((), σ, µ[σ(x)/v])
h∼ 〈(), γ[y/i]〉

Proof. The domain conditions are fulfilled since (v, σ, µ)
h∼ 〈i, γ〉, domµ =

domµ[σ(x)/v] and dom γ = dom γ[y/i]. Let ` ∈ domµ[σ(x)/v] = domµ. If ` =

σ(x) then µ[σ(x)/v](`) = v
h∼ i = γ[y/i](y) = γ[y/i](h(`)) since h(`) = (h ◦

σ)(x) = (h ◦ σ)(x) = y. Otherwise µ[σ(x)/v](`) = µ(`)
h∼ γ(h(`)) = γ[y/i](h(`))

using that h is injective and h is an extension of h. Finally ()
h→ (), which

completes the proof of the lemma.

Contexts If s = C[s1] for some context C such that (s1, Σ, µ) →cl (t1, Π, ν),

then by definition of →cl, t = C[t1]. By definition of
h∼ there exists d1 such

that d = C[d1]. By induction hypothesis there exists e1, δ such that 〈d1, γ〉 →∗ca
〈e1, δ〉 and (t1, Π, ν)

g∼ 〈e1, δ〉 for some g extension of h. By definition of →ca,
〈C[d1], γ〉 →∗ca 〈C[e1], δ〉. By induction on the structure of C, and using the fact

that the context C cannot contain any �, we can then prove that (C[t1], Π, ν)
g∼

〈C[e1], δ〉, which completes this case.

Computing under the pop indicator � If s = s1 � for s1 not a value, such that
(s1, Σ, µ) →cl (t1, Π, ν), and Σ = Σ′ :: σ, then by definition of →cl, t = t1 �

and Π = Π ′ :: σ for some Π ′. (s1 �, Σ′ :: σ, µ)
h∼ 〈d, γ〉, therefore (s1, Σ

′, µ)
h∼

〈d, γ〉. By induction hypothesis there exists e, δ such that 〈d, γ〉 →∗ca 〈e, δ〉 and

(t1, Π, ν)
h∼ 〈e, δ〉. Now this proves that (t1 �, Π ′ :: σ, ν)

h∼ 〈e, δ〉, which
completes this case.

ut

Proof of Theorem 2. We proceed similarly as for the proof of Theorem 1, by
induction on the derivation of 〈d, γ〉 →ca 〈e, δ〉. We do not detail any case here.
The cases for variable call, function application of a λ-term, variable assignment,
and contexts are symmetric to the ones seen in the proof of Theorem 1. The
case for function application of a constant function, composition, if conditional
and while loop are straightforward inductive arguments. Finally, this Theorem
does not need cases for λ-abstractions, popping from the environment stack or
computing with the pop indicator, as no rule in →ca applies to those. ut

5 Discussion

5.1 Capsules and Closures: a strong correspondence

Corollary 1 shows that capsules and closures are very strongly related. Not only
there is a derivation based on capsules for every derivation based on closures,
but these two derivations mirror each other. The computations are completely
bisimilar, even though definining computations for capsules is simpler.
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5.2 Capsules allow to suppress the stack of environments Σ

When using closures, a state is a triple (s, Σ, µ) whereas when using capsules, it
is just a capsule 〈e, γ〉. If they are bisimilar under h, it means that (h◦Σ)(d) = e

and µ
h→ γ. Capsules eliminate the need for the stack of environments Σ and

thus suppress the indirection in closures that was needed to handle imperative
features. Their small-step semantics also does not need any stack of environments
of any sort, making the state of computation much simpler. Finally, we originally
created the capsule environment γ to replace the (closure) environments of Σ.
However, it is remarkable that γ is much closer to the store µ, while at the same
time eliminating the need for Σ.
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