
Synthesizing Legacy String
Code for FPGAs Using
Bounded Automata Learning

Kevin Angstadt
St. Lawrence University

Tommy Tracy II
University of Virginia

Kevin Skadron
University of Virginia

Jean-Baptiste Jeannin
University of Michigan

Westley Weimer
University of Michigan

Abstract—The adoption of hardware accelerators, such as FPGAs, into general-purpose
computation pipelines continues to expand, but programming models for these devices lag far
behind their CPU counterparts. While high-level synthesis (HLS) can help port some legacy
software, many programs perform poorly without manual, architecture-specific optimization. We
propose an end-to-end approach combining dynamic and static analyses to learn a model of
functional behavior for off-the-shelf legacy code and synthesize a hardware description from this
model. Our prototype implementation can correctly learn functionality for string kernels that
recognize regular languages and provides a near approximation otherwise. We evaluate our
prototype tool on a benchmark suite of real-world, legacy string functions mined from GitHub
and successfully synthesize—without modification or annotation—over 80% (72% exactly and a
further 11% approximately). Traditional HLS, only after extensive modification and custom
testbench generation, can synthesize the same number of benchmarks, but with results that
have higher hardware requirements and lower maximum clock rates.

INTRODUCTION

The confluence of several factors, including
the significant increase in data collection, de-
mands for real-time analyses by business leaders,
the effective end of Dennard Scaling, and the
slowdown in Moore’s Law density scaling, have
led to the increased use of hardware accelera-
tors, including Field-Programmable Gate Arrays
(FPGAs), which offer a reconfigurable substrate

of logic blocks and storage elements. FPGAs in
high-performance computing are primarily used
to synthesize application- or domain-specific ac-
celerators; however, successful adoption currently
requires additional architectural knowledge for
effective programming and configuration. Frame-
works that reduce the need for architectural
knowledge or manual optimization would boost
the adoption of these devices.

MICRO Published by the IEEE Computer Society © 2022 IEEE 1



Adopting hardware accelerators into existing
application workflows requires porting code to
these new programming models. Unfortunately,
porting legacy code remains difficult. The pri-
mary programming model for FPGAs remains
Hardware Description Languages (HDLs) such as
Verilog and VHDL. HDLs have a level of ab-
straction akin to assembly-level development on
traditional CPU architectures. Despite providing
high throughputs, programming with HDLs can
be tedious to write correctly and optimize.

Higher levels of abstraction for programming
FPGAs have been achieved with high-level syn-
thesis (HLS) [1], languages such as OpenCL,1

and frameworks such as Xilinx’s SDAccel.2

While HLS may allow existing code to compile
for FPGAs, it still requires low-level knowledge
of the underlying architecture to allow for ef-
ficient implementation and execution of appli-
cations [2]. Therefore, there is a need for a
new programming model that supports porting
of legacy code, admits performant execution on
hardware accelerators, and does not rely on de-
veloper architectural knowledge.

In this article, we extend our
AUTOMATASYNTH3 framework to support
end-to-end (source-to-FPGA) synthesis of
Boolean string kernels (functions from strings
to booleans) and present a new empirical
comparison with HLS. These kernels represent a
class of functions with applications ranging from
high-energy physics to network security and
bioinformatics. AUTOMATASYNTH uses a new
approach for synthesizing and executing code on
FPGAs. Unlike HLS, which statically analyzes
a program to produce a hardware design,
AUTOMATASYNTH both dynamically observes
and statically analyzes program behavior to
synthesize a functionally-equivalent hardware
design. Our approach combines recent advances
in state machine acceleration [3], query-based
learning of state machines [4], and formal
methods [5]. Our algorithm features a formal
correctness proof [6].

We evaluate our end-to-end prototype on
a suite of string kernels mined from GitHub.

1https://www.khronos.org/opencl/
2https://www.xilinx.com/products/design-tools/legacy-tools/

sdaccel.html
3https://github.com/kevinaangstadt/automata-synth

We compare the performance of AUTOMATA-
SYNTH with a commercial HLS tool. Our eval-
uation demonstrates that AUTOMATASYNTH out-
performs current-generation HLS tools in terms
of hardware utilization and especially in program-
mer time and effort.

BACKGROUND AND RELATED WORK
AUTOMATASYNTH employs a novel combi-

nation of tools and techniques from multiple
computing disciplines. To the best of our knowl-
edge, this is the first framework to combine
model learning algorithms, software verification,
and architectures for high-performance automata
processing. We position our work in the context
of related efforts from each area.

Finite Automata
We model the behavior of legacy source code

using deterministic finite automata (DFAs) to
enable efficient acceleration with FPGAs. A DFA
processes input data by repeated application of
a state transition function with each subsequent
symbol in the input string. If an accepting state
is active after all input characters have been
processed, the DFA accepts the input (i.e., the
input matches the pattern encoded by the DFA).

Accelerators for Finite Automata
There is substantial research on the acceler-

ation of finite automata computation. Reconfig-
urable computing has emerged as an effective
platform for accelerating this form of computa-
tion, and automata have enabled the acceleration
of a wide variety of applications across many
domains [3].

Rahimi et al.’s Grapefruit framework enables
high-throughput automata processing using mod-
ern FPGAs [3]. While supporting high perfor-
mance, input problems must be phrased in an
explicit state machine model, which is uncommon
in extant software. Indeed, writing an automaton
has been demonstrated to be error-prone and
difficult [7], thus leaving an abstraction gap and
hindering widespread adoption of automata pro-
cessing accelerators.

State Machine Learning Algorithms
State machine learning attempts to learn a

state machine representation of a software or

2 MICRO

https://www.khronos.org/opencl/
https://www.xilinx.com/products/design-tools/legacy-tools/sdaccel.html
https://www.xilinx.com/products/design-tools/legacy-tools/sdaccel.html
https://github.com/kevinaangstadt/automata-synth


hardware system. These algorithms are a subset
of model learning and have been the subject of
study for several decades [8]. The most com-
mon approach is to use active learning in which
the model is learned by performing experiments
(tests) on the software or system to be learned.
State machine learning has been applied widely,
from internet banking to describing machine
learning classifiers [8]. Learning an equivalent
state machine from software remains challenging,
and most approaches employ approximations [4].

Program Synthesis and Verification
Program synthesis is a holistic term for

automatically generating software from some
input description. Many approaches employ
counterexample-guided inductive synthesis
(CEGIS) to produce a solution. CEGIS iteratively
constructs candidate solutions that are tested
(typically via formal methods) for equivalence.
We note that CEGIS is largely equivalent to
the techniques used in the model learning
community.

There has been significant research and engi-
neering effort applied to making these techniques
scalable, including using bounded or iterative
techniques to address recursive control flow [5].
Most closely related to our work has been the
use of bounded model checking to verify string-
processing web applications; however, this work
often focused on secure information flow rather
than constraints over strings [9].

A related body of research focuses on extract-
ing program behavior from legacy code for accel-
eration using domain-specific languages (DSLs),
an approach referred to as verified lifting. General
lifting approaches, however, often target CPUs
and GPUs rather than FPGAs [10].

High-Level Synthesis for FPGAs
High-Level Synthesis (HLS) allows for FPGA

development at a much higher level of abstrac-
tion (e.g., C) than HDLs [1] and has been
demonstrated to reduce development time [11].
However, the performance of designs constructed
using HLS can be unimpressive, requiring sig-
nificant annotation and optimization [2]. HLS
tools may also not support all features of the
source language (e.g., recursion and dynamic
data structures), meaning that legacy code must

be refactored before HLS can apply. Although
HLS does reduce the effort required to target
FPGAs over HDLs, there is still a significant
amount of work required to adapt C-like code
to run on FPGAs. Unlike HLS, our approach of
decoupling existing software design with the final
FPGA representation allows AUTOMATASYNTH

to generate peformant code with minimal rework.

LEARNING STATE MACHINES FROM
LEGACY CODE

We present AUTOMATASYNTH, a framework
for synthesizing hardware descriptions from off-
the-shelf, legacy code implementing regular lan-
guages. Our approach extends Angluin’s L* al-
gorithm [4] by (1) using bounded software model
checking with incremental unrolling to implement
one of its assumptions, (2) using software testing
to implement another of its assumptions, and
(3) transforming learned models into DFAs for
hardware synthesis.

L* Primer
Because many of our framework decisions

and results depend on the formulation of Dana
Angluin’s foundational L* algorithm [4], we
sketch it briefly.

At its core, the L* algorithm relies on a
minimally adequate teacher (MAT) to answer two
kinds of queries about a held-out regular lan-
guage, L. First, the MAT must answer member-
ship queries, yielding a Boolean value indicating
if the queried string is a member of L. Second,
the MAT must answer conjecture or termination
queries.4 Given a candidate regular language A,
the MAT responds with true if A = L or
responds with a counterexample string for which
A and L differ. (Since automata learning is used
in applications where L is not a DFA, this query
typically cannot be resolved by standard DFA
equivalence checking.)

Member queries are used to construct a struc-
tured observation table. Then, the table is directly
transformed into a candidate automaton for a
termination query. If the MAT responds with a
counterexample, the counterexample string and
its prefixes are added to the observation table. The

4These are also called equivalence queries, but we avoid this
term to prevent confusion with similar uses of the term in
software verification.

July/August 2022 3



1 int kernel(char* input) {
2   
3   char tmp;
4   char comp[4] = "aba";
5   int diff = 0;
6   int i = 0;
7   int offset = 0;
8   
9   do {
10     tmp = input[offset];
11     offset += 1;
12     if(comp[i] != tmp)
13       diff += 1;
14     i += 1;
15   } while (tmp != '\0' && i<4);
16   
17   if(i<4) { diff += (4-i); }
18   
19   while(tmp != '\0') {
20     diff += 1;
21     tmp = input[offset];
22     offset += 1;
23   }
24   
25   return diff <= 2;
26 }

Run Kernel with 
Example Inputs

(Membership Queries)

Candidate FSM

Check for 
Correctness

aab

Counterexample

Correctness Check
Explore kernel program configurations 
to discover if a disagreement between 

the kernel and FSM is reachable

Pr
og

ra
m

 C
on

fig
ur

at
io

ns

Initial Program 
Configurations

Error C
onfigurations 

(C
ounterexam

ple 
Found)

Safe Configurations 
Never Reach Error

Correct!
Synthesize 

to RTL

aaa

abab

abaa

Refine

(Termination Query)

Source Kernel

Refine

Refine

Refine

Figure 1. Example execution of AUTOMATASYNTH. The kernel function returns true for all strings within a
hamming distance 2 of ”aba”. An initial automaton (triangles indicate starting states) is learned by running the
kernel with example inputs. It is then checked for correctness using software verification to discover inputs that
disagree. Four further refinements introduce new states and transitions through automated membership and
termination queries. In this example, all counterexamples are strings the automaton should accept, but does
not (false negatives). The final automaton passes all checks and is ready for synthesis to RTL.

process repeats until the MAT responds to a ter-
mination query affirmatively. The final automaton
is minimal and accepts the learned language.

AUTOMATASYNTH Problem Description
In this subsection, we formalize the problem

of learning a state machine from a legacy Boolean
string kernel: a function that takes one string
argument and returns a Boolean value:

kernel : string → bool

We assume that the source code for this function
is provided and that the function halts and returns
a value on all inputs (i.e., kernel is an algo-
rithm). If kernel recognizes a regular language,
AUTOMATASYNTH returns a state machine, M ,
with equivalent behavior to kernel: for all s ∈
Σ∗, M(s) = kernel(s). For runs which exceed
a resource budget or expose incompleteness in the
underlying theorem prover (including functions
that are non-regular), our prototype implementa-
tion alerts and provides approximate equivalence,
where M(s) = kernel(s) when the length of
s is less than an arbitrary fixed length. We have
formally proven that our framework produces an

equivalent DFA for input kernels that recognize
regular languages [6]. Our empirical evaluation
demonstrates that real-world legacy string kernels
either recognize regular languages, or our tool can
produce approximations of the original functions.

Figure 1 presents a worked example of AU-
TOMATASYNTH learning a kernel function that
matches all strings within a hamming distance of
two from “aba”. Execution of the kernel (mem-
bership queries) produces an initial candidate
automaton, which is correct for a subset of inputs.
In this example, five termination queries (and
additional membership queries) iteratively refine
the candidate automaton.

Using Source Code as a MAT
We extend Angluin’s L* algorithm to learn a

DFA representation of a legacy string kernel by
constructing a MAT that can answer membership
and termination queries for a string kernel.

Membership Queries.
We observe that a membership query for a string,
s, may be implemented by executing the legacy
kernel on s: the result returned by the function is
the answer to the query. For C-style languages,

4 MICRO



we interpret Boolean values in the standard way
(i.e., 0 is false and other values are true).
We found that compiling the kernel to a shared
object and then invoking the function dynamically
provided the best stability in our experiments.

Termination Queries.

At the heart of our problem formulation is the
challenge that a legacy string kernel does not
admit a direct means for answering termination
queries. For example, our initial efforts found
testing alone (which is applicable for some do-
mains of model learning [8]) often incorrectly
answered termination queries in this use case. Our
insight is that verification strategies from software
model checking can test for equivalence between
the kernel and a candidate automaton.

Traditionally in verification, equivalence
would be proven using bisimulation or
interleaving of the automaton and the source
kernel. However, this formulation presupposes
that the “state transitions” are directly encoded in
the source code and can be aligned with the state
transitions in the candidate automaton. We do not
make this assumption in our problem definition,
and we prefer an approach that does not require
manual annotation. To broadly support legacy
code, we do not even assume that the states of
the equivalent automaton are visited “in order”
during the execution of the legacy kernel.

We observe that a counterexample t ∈ Σ+

is in either in L(kernel) or L(M) but not in
both, and thus will always satisfy the constraint
t ∈ L(kernel) ⊕ L(M), where ⊕ is the
symmetric difference operator. Therefore, we ask
the software verifier to prove that there is no
execution of kernel such that kernel and the
candidate machine disagree on an answer. This
formulation allows verification without directly
encoding bisimulation. To test this reachability
property, we use a novel combination of bounded
model checking with incremental loop unrolling
augmented with a string constraint solver. Our
prototype uses the CPAChecker verifier [12],
which we extended to support the draft SMT-LIB
strings theory interface.5

5http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

L*
Learner

Minimally Adequate Teacher

Membership Query

Termination Query

s
?
∈ L(Kernel)

True or False

L(M)
?
= L(Kernel)

True or
Counterexample

Kernel

Mapper
Software Verifier

SMT

Solver

String

Solver

Learned
Automaton M Synthesis

FPGA

Figure 2. AUTOMATASYNTH System Architecture.
The MAT uses the legacy kernel to answer member-
ship queries. The mapper combines the kernel and
candidate automaton to produce a software verifica-
tion problem. Using bounded software model check-
ing combined with string decision procedures, we
search for a counterexample that distinguishes the
target language from the language of the candidate
automaton. Finally, we synthesize the learned au-
tomaton for execution on an FPGA.

Synthesizing Hardware Descriptions from
Automata

Once a state machine has been learned using
the L* algorithm with our custom MAT, the ker-
nel is now amenable to acceleration. We convert
the learned automaton to a hardware description
and synthesize the design for loading onto an
FPGA using Grapefruit [3]. Grapefruit does not
attempt to replace traditional HLS and its associ-
ated optimizations for the general case. Instead,
it replaces HLS with an optimized RTL mapping
of the learned automaton. HLS optimizations such
as memory partitioning and loop transformations
don’t have direct correspondences in Grapefruit
and AUTOMATASYNTH because there is no one-
to-one mapping from source to RTL.

System Architecture
Figure 2 depicts the high-level system ar-

chitecture of our framework. The L* learner
(left) queries a MAT (right) consisting of the
legacy source code, software model checker,
SMT solver, and string decision procedure. The
legacy string kernel is used by the MAT to
answer membership queries. Termination queries
are transformed by a mapper into a software
verification problem that searches for a string

July/August 2022 5

http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml


that distinguishes the language of a candidate
automaton from the target language implemented
in the kernel. The output of the Learner is a DFA
that encodes the same computation as the Kernel.
We use this DFA to synthesize a hardware design
for execution on an FPGA.

EXPERIMENTAL METHODOLOGY
In this section, we describe our process for

selecting real-world, legacy string kernel bench-
marks as well as our experimental setup for the
evaluation described in the following section.

Benchmark Selection
In our evaluation, we compare the perfor-

mance of AUTOMATASYNTH with that of a com-
mercial HLS tool. We construct our benchmark
suite by mining legacy string kernels from the
most popular open-source software projects on
GitHub. In total, we considered 26 repositories
and mined 973 separate string kernel functions.
After filtering for duplicates and a manual analy-
sis to identify functions that return Boolean val-
ues, we collected 18 meaningfully-distinct real-
world benchmarks.

The first three columns of Table 1 provide an
overview of these string kernels. We use the func-
tion name to refer to each benchmark and also
indicate the source project for each. Lines of code
(LOC) provides a count of the total number of
non-comment lines in the post-processed version
of the benchmark.

High-Level Synthesis Workflow
We evaluate the performance of our synthe-

sized automata against those generated by Xilinx
Vitis HLS version 2020.1. We run HLS on the
source code targeting the Alveo U280 accelerator
card and using the Vivado IP Flow Target. We
also created a testbench for each source file
for verification. HLS generates Verilog and data
files. To gather utilization and timing results we
perform synthesis, placement and routing (in out-
of-context mode).

We applied a standardized series of trans-
formations to each benchmark kernel to support
HLS synthesis and verification. First, if the kernel
operates over a fixed set of indices, we bounded
the input length in HLS. Next, if the kernel
used standard string library code (e.g., strcmp),

gi
t

of
fs

et
1s

t
co

m
po

ne
nt

A
M

F
D

ec
od

eB
oo

le
an

cf
is

co
m

m
en

t
cf

is
sp

lic
e

is
re

se
rv

ed
na

m
e

ch
ec

ke
rr

or
m

sg
ch

ec
kf

ai
l

sk
ip

lin
e

st
bt

t
is

fo
nt

ha
s

st
ar

t
co

de

en
d

lin
e

st
ar

t
lin

e

is
nu

m
er

ic
in

de
x

is
m

co
un

te
d

se
ct

io
n

na
m

e

is
co

m
m

en
t

−100

−50

0

50

100

150

200

250

300

350

Pe
rc

en
t

Im
pr

ov
em

en
t

O
ve

r
H

L
S

LUT Resources

FF Resources

Fmax

Figure 3. Differences in resource and time utilization.
Higher bars show AUTOMATASYNTH using fewer re-
sources and running at a higher frequency than HLS.

we added a synthesizable version of the source.
Finally, if the kernel operated over an unbounded
array, we ported the kernel to C++ to allow use of
an HLS stream abstraction. In practice, we found
that this transformation is nontrivial and required
significant programmer effort and expertise. For
consistency in timing with our execution of AU-
TOMATASYNTH, we limited ourselves to one day
(approximately six hours of dedicated work time)
per kernel to port, test, and optimize using HLS.

Experimental Setup
All executions of AUTOMATASYNTH use an

Ubuntu 16.04 Linux server with a 3.0 GHz Intel
Xeon E5-2623-v3 with four physical cores and
16 GB of RAM and a maximum time budget of
24 hours. We target the Xilinx Alveo U280 FPGA
for both automata generated by AUTOMATA-
SYNTH and also Verilog generated by Vitis HLS.
The U280 is a data center accelerator, one of the
highest performance cards offered by Xilinx.

EVALUATION
In this section, we first evaluate the correct-

ness of the state machines generated by AU-
TOMATASYNTH and report runtime and query
counts. Second, we present a new comparison
of the performance of AUTOMATASYNTH and
Xilinx High-Level Synthesis (HLS).

6 MICRO



Table 1. Experimental Results of AUTOMATASYNTH on Benchmark Suite of Real-World, Legacy String Kernels

Total Approx.
Membership Term. Number Runtime HLS Dev.

Benchmark Project LOC Queries Queries of States (m) Correct Time (m)

git_offset_1st_component Git: Revision control
system

6 4,090 2 2 <1 ✓ 60
is_encoding_utf8 38 − − − − ✘† ✘

checkerrormsg jq: Command-line
JSON processor

4 32,664 2 15 1,437 ✓∗ 60
checkfail 14 189,013 3 35 1,438 ✓∗ 60
skipline 17 7,663 3 3 5 ✓ 60

end_line

Linux: OS kernel
11 510,623 4 44 492 ✓ 60

start_line 11 206,613 2 46 80 Approx. 60
is_mcounted_section_name 54 672,041 7 57 1438 Approx. 120

is_numeric_index MASSCAN: IP port
scanner

17 10,727 3 4 5 ✓ 120
is_comment 11 4,090 2 2 <1 ✓ 60

AMF_DecodeBoolean

OBS Studio: Live
streaming and
recording software

2 2,557 2 2 <1 ✓ 60
cf_is_comment 28 4,599 2 4 5 ✓ 240
cf_is_splice 22 1,913 2 4 <1 ✓ 60
is_reserved_name 39 350,705 8 42 1,424 ✓ 120
has_start_code 18 10,213 2 7 <1 ✓ 60

number_is_valid openpilot: Open-source
driving agent

72 − − − − ✘‡ ✘

utf8_validate 72 − − − − ✘§ ✘
stbtt__isfont 24 79,598 5 19 <1 ✓ 60

∗AUTOMATASYNTH warned of a potential approximate solution due to timeout, but manual analysis confirmed correctness
†Requires strcasecmp support ‡Requires strtod support §Performs math on characters

Includes time to modify source, synthesize, and test. Excludes approximately 2-3 days to read relevant documentation.

State Machine Learning vs HLS
Table 1 presents results from our empirical

evaluation of AUTOMATASYNTH, including sev-
eral metrics such as query counts and overall run-
time. The penultimate column reports successful
synthesis runs (✓), approximate results, and fail-
ures (✘) for AUTOMATASYNTH. HLS success-
fully synthesizes the same set of benchmarks. We
report the approximate development time needed
for an experienced developer to complete our
standardized HLS workflow protocol.

AUTOMATASYNTH correctly learned thirteen
of the eighteen benchmarks. Two benchmarks
yield approximate solutions, with many of these
approximations being extremely similar to the
target kernel functionality. In our evaluation, this
approximation was always the result of timeouts
rather than the relative completeness of the SMT
solver used for termination queries. The three un-
supported kernels use computation that is difficult
to capture with present string decision procedures.

We successfully synthesized hardware for the
same fifteen benchmark kernels within the set
time limit of six hours with HLS. The three we
could not complete in time required heavy pointer
arithmetic, a challenging function (strtod) to
write for synthesis, and a significant amount of
effort to generate suitable testbenches. We found

that string kernels over unbounded inputs required
significant effort to synthesize and verify with
HLS. Benchmark functions involving multiple,
non-sequential data accesses needed significant
refactoring to allow for strictly linear (sequen-
tial) access with HLS stream abstractions. AU-
TOMATASYNTH, by contrast, has general support
for random access at the source level—our frame-
work automatically serializes this behavior to an
equivalent DFA representation.

For HLS, we estimate a 2-3 day cost (beyond
initial training) to read documentation to under-
stand the limitations of HLS, the streaming func-
tionality to allow for unbounded array accesses,
and the requirements for synthesizable functions.
Even without this time, HLS development took
longer than AUTOMATASYNTH for nine of these
benchmarks. Thus, AUTOMATASYNTH can sig-
nificantly reduce the time burden on developers
porting string functions to FPGAs.

Hardware Acceleration Performance
For spatially-reconfigurable architectures akin

to FPGAs, the dominant factor affecting per-
formance is the number of hardware resources
used by a design, as well as the maximum clock
frequency that the design can sustain, or Fmax.

We use Grapefruit [3] to target the Xilinx

July/August 2022 7



U280 FPGA with the automata generated by
AUTOMATASYNTH, and used the same compi-
lation script for our HLS results. To minimize
the complexity of our comparisons, we performed
an out-of-context evaluation and synthesized and
place-and-routed the kernels on the FPGA.

Figure 3 shows the relative amount of hard-
ware resources required by each string kernel as
well as the maximum clock frequency that each
design could sustain normalized to HLS results.
Higher is better: bars with positive values mean
that AUTOMATASYNTH used fewer resources (or
has higher clock frequency) than the equivalent
kernel implemented with HLS. On average, AU-
TOMATASYNTH produced hardware descriptions
requiring 67.3% fewer Flip-Flops and 40.1%
fewer LUTs, while processing data 88.7% faster
than HLS. Part of this performance results from
Grapefruit, which produces a highly tuned, RTL
implementations for finite automata processing.
Further, AUTOMATASYNTH learns the behavior
of the source function rather than transforming
the CFG directly. Thus, our approach is able to
generate efficient state machines in spite of any
inherent inefficiencies in the source code.

CONCLUSIONS
We present AUTOMATASYNTH, an end-to-

end framework for accelerating Boolean string
kernel functions using FPGAs. Our approach uses
a novel combination of state machine learning,
software verification, string decision procedures,
and high-performance automata processing ar-
chitectures to learn the behavior of a program
and construct a behaviorally-equivalent FPGA
hardware description. AUTOMATASYNTH suc-
cessfully constructs equivalent (or near equiva-
lent) FPGA designs for 83% of these benchmarks
mined from open-source projects on GitHub.
While modern HLS toolchain also supported 83%
of these same benchmarks given similar devel-
opment time, many kernels required significant
hardware-specific modifications. Hardware gen-
erated by AUTOMATASYNTH also consistently
outperforms HLS-generated hardware in terms
of resource utilization and maximum clock fre-
quency. We believe this approach shows promise
for overcoming some of the limitations of current
HLS techniques and easing the burden placed on
developers.

ACKNOWLEDGMENT
This work is funded in part by: NSF grants

CCF-1629450, CCF-1763674, CCF-1908633;
AFRL Contract No. FA8750-19-1-0501; the
Jefferson Scholars Foundation; and CRISP,
one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored
by DARPA.

REFERENCES
1. R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis,

Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. An-

derson, and K. Bertels, “A survey and evaluation of

FPGA high-level synthesis tools,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, vol. 35, no. 10, pp. 1591–1604, Oct 2016.

2. H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda,

and S. Matsuoka, “Evaluating and optimizing OpenCL

kernels for high performance computing with FPGAs,”

in High Performance Computing, Networking, Storage

and Analysis, 2016, pp. 35:1–35:12.

3. R. Rahimi, E. Sadredini, M. Stan, and K. Skadron,

“Grapefruit: An open-source, full-stack, and cus-

tomizable automata processing on fpgas,” in 2020

IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM).

Los Alamitos, CA, USA: IEEE Computer Society, may

2020, pp. 138–147.

4. D. Angluin, “Learning regular sets from queries

and counterexamples,” Information and Computation,

vol. 75, no. 2, pp. 87–106, Nov. 1987.

5. A. Biere, “Bounded model checking,” in Handbook of

Satisfiability, 2009, pp. 457–481.

6. K. Angstadt, J.-B. Jeannin, and W. Weimer, “Accelerat-

ing legacy string kernels via bounded automata learn-

ing,” in Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’20.

New York, NY, USA: Association for Computing Machin-

ery, 2020, p. 235–249.

7. G. Ammons, D. Mandelin, R. Bodı́k, and J. R. Larus,

“Debugging temporal specifications with concept anal-

ysis,” in Proceedings of the 2003 ACM SIGPLAN Con-

ference on Programming Language Design and Imple-

mentation, 2003, pp. 182–195.

8. F. Vaandrager, “Model learning,” Communications of the

ACM, vol. 60, no. 2, pp. 86–95, Jan. 2017.

9. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and

S.-Y. Kuo, “Verifying web applications using bounded

8 MICRO



model checking,” in International Conference on De-

pendable Systems and Networks. IEEE, 2004, pp.

199–208.

10. B. Collie and M. P. O’Boyle, “Program lifting using gray-

box behavior,” in 2021 30th International Conference

on Parallel Architectures and Compilation Techniques

(PACT). Los Alamitos, CA, USA: IEEE Computer

Society, sep 2021, pp. 60–74.

11. S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are

we there yet? a study on the state of high-level syn-

thesis,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 38, no. 5, pp.

898–911, May 2019.

12. D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for

configurable software verification,” in Computer Aided

Verification, G. Gopalakrishnan and S. Qadeer, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,

pp. 184–190.

Kevin Angstadt, is an Assistant Professor of Com-
puter Science at St. Lawrence University. Kevin re-
ceived a BS from St. Lawrence University in 2014,
a Masters degree from the University of Virginia in
2016, and PhD in computer science and engineer-
ing from the University of Michigan in 2020. His
research focuses on improving programming support
for emerging hardware technologies, including both
the development of new programming models as
well as automated techniques for adapting existing
software. Contact him at kangstadt@stlawu.edu.

Tommy Tracy II is a Research Scientist in the Com-
puter Science Department at the University of Virginia
(UVa). He received his B.S. in 2010, M.E. in 2014, and
Ph.D in 2019 all from UVa. His research focuses on
network processing and accelerating pattern match-
ing on FPGAs. Contact him at tjt7a@virginia.edu.

Kevin Skadron is the Harry Douglas Forsyth Pro-
fessor of Computer Science at the University of Vir-
ginia, where he has been on the faculty since 1999,
after receiving his PhD at Princeton. He served as
department chair from 2012-2021. He is also director
of the Center for Research on Intelligent Storage and
Processing in Memory, part of the SRC JUMP pro-
gram. He is a Fellow of the IEEE and the ACM, and a
recipient of the 2011 ACM SIGARCH Maurice Wilkes
Award. Skadron’s research interests include design
and application of accelerators and heterogeneous
architectures, their memory hierarchies, and asso-
ciated power, thermal, reliability, and programming
challenges. He and his colleagues and students have

developed a number of tools to support research on
these topics, such as MNCaRT, HotSpot and Rodinia.
Contact him at skadron@virginia.edu.

Jean-Baptiste Jeannin is an Assistant Professor of
Aerospace Engineering at the University of Michigan.
Jean-Baptiste received an Engineering degree from
École polytechnique, France, and a Ph.D. in Com-
puter Science from Cornell University in 2013. His
research focuses on providing strong formal guaran-
tees to aerospace and cyber-physical systems, using
techniques from programming languages and formal
verification. Contact him at jeannin@umich.edu.

Westley Weimer is a Professor of Computer Sci-
ence and Engineering at the University of Michigan.
Westley received a BA from Cornell and a Master’s
Degree and Ph.D. from Berkeley in 2005. His re-
search focuses on static and dynamic analyses to
improve software quality, particularly focusing on au-
tomatic or minimally-guided techniques that can scale
and be applied easily to large, existing programs.
In addition, he uses medical imaging techniques to
study human interactions in software engineering.
Contact him at weimerw@umich.edu.

July/August 2022 9


	BACKGROUND AND RELATED WORK
	Finite Automata
	Accelerators for Finite Automata
	State Machine Learning Algorithms
	Program Synthesis and Verification
	High-Level Synthesis for FPGAs

	LEARNING STATE MACHINES FROM LEGACY CODE
	L* Primer
	AutomataSynth Problem Description
	Using Source Code as a MAT
	Synthesizing Hardware Descriptions from Automata
	System Architecture

	EXPERIMENTAL METHODOLOGY
	Benchmark Selection
	High-Level Synthesis Workflow
	Experimental Setup

	EVALUATION
	State Machine Learning vs HLS
	Hardware Acceleration Performance

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Kevin Angstadt,
	Tommy Tracy II
	Kevin Skadron
	Jean-Baptiste Jeannin
	Westley Weimer


