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Abstract—Many road vehicle accidents are the result of
collisions with foreign objects, and automatic collision avoidance
is of critical interest to car manufacturers and their customers.
Previous work on formally verifying collision avoidance maneu-
vers typically assumes point-shaped or circular-shaped vehicles
for simplicity. In this paper, we formulate and formally verify
sufficient conditions for the safety of a representative collision
avoidance system for cars with a realistic geometrical shape.
The collision avoidance system discussed here is designed to
issue swerving advisories. We model the vehicle kinematics
and control advisory as a hybrid program, allowing to model
both discrete decisions of the system and continuous dynamics
of the car. We formally verify the collision avoidance system
by providing rigorous, computer-checked mathematical proofs
of collision avoidance under well-defined, explicit sufficient
conditions on vehicle kinematics and parameters. This formal
verification provides a mathematical guarantee that the collision
avoidance system can prevent the vehicle from collision under
all possible scenarios as long as certain conditions hold true.

We model the system using differential dynamic logic d.¥
and use the automated theorem prover KeYmaera X for formal
verification. This work employs a purely symbolic model, and
can thus be extended to verify other types of collision avoidance
systems exhibiting richer behavior.

Keywords— Formal Verification, Hybrid Systems, Automotive
Systems, Car Collision Avoidance.

I. INTRODUCTION

A major cause of motor vehicle accidents is a collision
with other fixed objects and vehicles, and the avoidance of
such collisions is one of the main areas targeted by driving
safety mechanisms. This task of autonomously guiding a
vehicle, while avoiding surrounding objects, requires the
ability to predict the vehicle’s trajectory under different
control inputs, and also requires the design of autonomous
controllers for guiding the vehicle in a given environment.
Predicting a vehicle’s behavior in response to control inputs
has been extensively studied through various vehicle dynam-
ics models, e.g. [6], [21], [24]. Similarly, the area of path
planning for obstacle avoidance is thoroughly developed,
e.g. [8], [9], [12].

However, practical implementations of existing car col-
lision avoidance systems involve interaction between cyber
systems (discrete controllers, processing units, digital sen-
sors) and physical systems (the vehicle). Because of the
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underlying strong coupling of the cyber and physical sys-
tems, successfully implementing such a collision-avoidance
controller is a non-trivial task. Furthermore, it is difficult
to guarantee that the collision avoidance system will work
as intended — i.e., prevent collisions — in every possible
scenario. Nonetheless, its correctness is of utmost importance
due to the safety-critical nature of the problem. Hence, there
is a need for mathematically verifying the performance and
safety of such a system and of its implementation.

In this work, we have formulated and formally verified
explicit sufficient conditions for the safety of a simple yet
representative collision avoidance system for a planar vehicle
of rectangular shape such as a car. This formal verification
provides a mathematical guarantee that the system will pre-
vent the vehicle from collisions under any possible scenario
as long as some well-defined conditions are satisfied. For
simplicity, we assume that the vehicle’s behavior while
turning conforms to pure Ackermann’s steering [11], and
its speed is assumed to be fixed throughout its motion.
This essentially renders some points on the vehicle to be
a Dubin’s Vehicle, and restricts their behavior to traversing
a combination of circular curves and straight lines in a
fixed plane, at a constant speed. This resulting trajectory
is also called a Dubin’s path [4] (Fig. [I). The obstacle
has been modeled as a static point in the vehicle’s plane
of motion. Our collision avoidance system is modeled as a
discrete controller, which switches the vehicle’s motion from
a circular trajectory to a straight line trajectory, and vice-
versa, thus rendering the overall kinematics of the vehicle
piece-wise continuous. Finally, our model is purely symbolic
(rather than numeric), and the results are thus applicable to
a vast number of cases, with any variation of the involved
parameters.

To verify our collision avoidance system, we model the
overall kinematics of the vehicle as a hybrid program, and
specify collision avoidance as a safety property in differential
dynamic logic [16]. We then formally verify this safety prop-
erty under some well-defined explicit sufficient conditions
on dynamic variables, thereby guaranteeing safety of the
collision avoidance system. To formalize the overall kine-
matics involving piece-wise continuous differential equations
and to state the collision avoidance property of the system
unambiguously, we have used differential dynamic logic d.£
[16] and utilized the d.Z theorem prover KeYmaera X [5]
to perform the machine-checked formal verification.

Challenges - For a purely symbolic model of collision
avoidance system and a rectangular vehicle, formulating
the explicit sufficient condition that ensures collision avoid-
ance under all possible scenarios and variations of the



Fig. 1: Trajectory of a Dubin’s vehicle

involved parameters is challenging. The developed vehicle
kinematics model also has transcendental solutions involving
trigonometric functions. The presence of these transcendental
solutions makes the arithmetic generally undecidable. To
circumvent this, we follow the method of Platzer [17], [19],
modeling the involved transcendental functions as auxiliary
variables within our hybrid program, and using a differential-
invariant-based method for verifying the safety property.

II. KINEMATICS AND
DIFFERENTIAL DYNAMIC LOGIC

A. Vehicle Kinematics

We first derive the kinematics for a point vehicle moving
at a constant speed using the Unicycle motion model. Sub-
sequently, we assume that the extended rectangular vehicle
conforms to pure Ackermann’s steering [11] (Fig. [2). Using
this assumption along with the kinematics of a point vehicle,
we generate the kinematic model of the extended vehicle.
We strategically choose the location of the point vehicle to
coincide with the midpoint of the extended vehicle’s rear
axle (point C in Fig. [2), as this provides a simplification
that the heading of our extended vehicle lies parallel to
the instantaneous velocity v of the point vehicle C at all
times. This simplification is a direct result of the kinematic
constraints implied by Ackermann’s steering [11] (Fig. [2).

The kinematic diagram of the point vehicle is shown in
Fig. and describes a circle. The derived equations of
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Fig. 2: Ackermann’s steering geometry

Fig. 3: Kinematic diagram

motion for the extended vehicle are:

x(r) = vsin(0(¢)) 1)

() =vcos(0(¢)) 2)
V2 . . ﬁ

R(t) = {Ilg ?f Rypin < g and u < U, 3)
Ruin  if Ryin > ﬁ

o(t) = 0(t) =v/R(t) 4)

Here, x(t),y(t) and R(r) (Fig. [3), are the position coordi-
nates and the instantaneous radius of curvature of the point
vehicle. R, is the minimum possible turning radius at the
rear axle’s center of the extended vehicle, due to its steering
geometry’s physical constraint, and (U, U,) are the effective
coefficients of kinetic and static friction between the vehicle
and the road, respectively. 0(¢) and @(¢), denote the heading
angle and yaw rate of the extended vehicle. Equations (I) -
(@) form the full kinematic model of our extended vehicle.

B. Swerving Behavior

In order to analyze the swerving behavior of the extended
vehicle, we introduce the following parameters/assumptions:

« The extended vehicle’s body is assumed to be a rectan-
gle of length L and width W.

o The distances from the front and rear bumper of the
vehicle to its rear axle are /r and g, resp. (Fig. )

« While swerving, the instantaneous radius of curvature
R (measured at the center of the rear axle, C) remains
constant with R > R,,;, and R > "—zg.

e c is a turn-indicating parameter; ¢ = —1 if the vehicle
is turning right and ¢ = +1 if it is turning left.

We also assume that during the transition between straight
and swerving motions, the vehicle’s wheels instantly turn to
match the new direction of travel. Although this instanta-
neous change in wheel direction is not dynamically feasible,
we assume it for simplicity.

Fig. @] depicts a scenario where the vehicle is just starting
its swerve of radius R, in order to avoid colliding with the
obstacle at (x,p5, Yops)- We mark this time instant as ¢1. Note
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Fig. 4: Vehicle schematic at the start of turn

that here the coordinate system’s origin is at the vehicle’s rear
axle’s center at time ¢ = 0. With the parameters/assumptions
listed above, the closed form solution for equations of motion

(I - @ is as follows:

0 fort <n
o(t)= - 5
) {_Cv(ltq_t‘) fort >1 ®)
(0,vt) fort <t

(c(Rcos|6(t)| “R),
(vty +Rsin|e(t)\))

(_x’y) B fort > 1 (6)

In order to monitor that the extended vehicle does not
collide with the obstacle, we track the position of its critical
boundary points. In Fig. @ OT and NH are respectively the
points on the front and rear edge of the vehicle, farther from
the center of the turning circle. Since the other boundary
points of the rectangular vehicle are not critical in avoiding
a collision, their analysis is omitted. The trajectory for OT
and NH can be found using Equation (6):

(xorsyor) :z((xfc(lfsin|9(t)|7%005|9(t)\)), )

(v Lycos 0] + - sin 0(1)]))

(xNH,YNH) ::((x+c(l,sin\9(t)| + %cos|9(t)|)), (8)

(yfl,cos|9(t)| +¥sin|9(r)|))

Fig. [5] depicts the trajectory of the boundary points of
the vehicle for a right-turn. This figure has been generated
by numerically simulating equations (3)-(8) in MATLAB,
using standard values for the various parameters involved.
Fig. 5] also shows that while turning right, for a brief period
of time, the boundary point NH moves towards the left.
This is purposely exaggerated in the inset of Fig. [5] This
phenomenon leads to the formation of a “notch”, where NH

Fig. 5: Vehicle’s trajectory and notch formation while turning

protrudes to the left from the initial (at r = #1) left edge of
the vehicle. The time duration tyg, for which the point NH
stays in this notch and the maximum distance devypy, that
it sticks out from the vehicle’s initial left boundary can be

calculated as:
—1 IR
2tan ( R+T )

INH = 7@ 9

2
devyy = 1,%+<R+W) Y (10)

2 2

The value of devyy for standard automobiles is usually of
the order of centimeters, e.g. for a 2020 Toyota Corolla XLE
[1], with R = 10 m, devyy = 4.2689 cm.

In the rest of this work, the rectangular vehicle is assumed
to have no body extending behind its rear axle, i.e. [g =0.
This assumption is made to avoid the effects of the “notch”
formed by the vehicle body extending behind its rear axle.
This is reasonable as point NH (FigH) stays inside the
boundary traced by point OT, except for the “notch” which
is negligible (a few centimeters) for standard automobiles.
For vehicles with a longer length behind the rear-axle such
as busses, the notch becomes more significant.

C. Differential Dynamic Logic d.¥

The differential dynamic logic d.% [16] is an extension of
dynamic logic supporting ordinary differential equations. It
supports discrete assignments, implementation of choice and
control loops, and execution of differential equations [17]—
[19], which makes it an appropriate modeling choice for our
work. We model our system as a hybrid program (HP) [17],
as used by differential dynamic logic. A brief description of
some of the operators of d.Z used in our model is given
below.

e o : non-deterministic repetition operator which repeats
the program o for zero or more times.

e (¥ =6 & Q) : continuous evolution of the state x within
the evolution domain Q, along the differential equation
(' = 0), for any arbitrary (positive) amount of time.



e p— |0 g : says that all executions of hybrid program
o starting in a state satisfying logical formula p, end
up in a state satisfying q.
For a more comprehensive description of differential dy-
namic logic d.Z and its operators, readers are referred to
original sources such as [16], [17], [19].

ITT. FORMAL VERIFICATION OF A SWERVING
MANEUVER

A. Collision Avoidance System

We have modeled our collision avoidance system as a
discrete controller. This controller acts by providing steering
inputs to the vehicle, thereby swerving it in a circular
trajectory through a certain angle in order to prevent col-
lision. Subsequently, after passing the obstacle, the system
straightens the wheel to zero the steering input, and the car
continues in a straight line. Fig. [6] shows the schematic of
the collision avoidance system.

The collision avoidance system’s advisories are assumed
to be of the following form:

o Advisory issued from the collision avoidance system is
of the form (R, 8™*), where R is the suggested radius of
turn (measured at point C) and 6% is the advised angle
of turn with respect to the 1n1t1a1 direction of travel.

o Advisory is valid i.e. R > Rmm, < Uog and 6™ <

e We assume that the values of cos(0™%) = cpin and
sin(0™%) = 5,4, are available to us a priority.

« After following the advisory, i.e., turning through angle
6% with a constant speed of v =v,, the car proceeds
straight with the same speed.

o The advisory is assumed to involve right turn only. This
does not result in any loss of generality, since the case
of left turn is symmetric.

The coordinate frame for the model is centered at the
center of the circular path suggested by the advisory and ¢ is
considered 0 at the instant the vehicle starts turning. Further-
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Fig. 6: Schematic of collision avoidance system

time instant when the vehicle leaves the circular trajectory
and starts moving straight.
Under the assumptions listed above, the solution trajecto-

ries for Equations (1)) - () are given by and (I2). These
trajectories have been used in formulating the d.Z model.

x(1) = —Reos(6(1))
t <t,: 4 y()=Rsin(0(t)) (11
0(t) = (vot)/R
x(t) = —Rcos(0™%) +v,(t —t,) sin( ™)
1>ty 4 y(t) = Rsin(0™%) +v,(r —t,) cos(0™*) (12)
e(t) — emax
B. dZ Modell]

In developing the d.¥ model of our collision avoidance
system, we have utilized the notion of “safety regions” [10]
for a given advisory (R, 0™*). A safety region for a given
advisory is defined as the set of all possible positions of an
obstacle, such that the current advisory prevents the vehicle
from colliding with the obstacle. Using this definition, all
the points to the left of the outer boundary formed by the
trajectory of OT (Fig.|7) and below the horizontal axis y = 0,
fall into the safety region. Points on the right side of the of
trajectory of IN, fall into the safety region as well.

The full double-sided safety region is shown in Fig.
In Fig. 0] only the left side part of the full safety region is
shown, defining it as the single-sided safety region. In this
paper, we have worked with only single-sided safety regions
and, have omitted the cases where the obstacle lies on the
right side of the advised trajectory. Readers interested in the
formal proves of collision avoidance with double-sided safety
regions are referred to [2]. Also, the safety region depiction
will look different for different relative values of the involved
parameters and advisory. Fig. shows one such possible
variation of the single-sided safety region. However, since
our d.Z model is purely symbolic, the theorems and their

The formal models and proofs described in this paper are available at
https://jeannin.github.io/papers/acc20.zip
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Fig. 7: Turning circle for swerving
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formal proofs discussed here are constructed in a manner
that encompasses all such possible geometric variations.

To verify the collision avoidance system, we use two
different (but equivalent) formulations of the safety region:
an implicit formulation, which is better amenable to formal
proofs but cannot directly be checked at run-time because
it contains quantifiers; and an explicit formulation, which
contains explicit expressions for the safety region boundary
but is comparatively less amenable to formal proofs. Our
approach consists of proving our model with respect to
the implicit formulation (it is easier), then proving that our
implicit and explicit formulations are equivalent. Therefore,
we formulate the following safety theorems, that we make
more precise in the next section:

Theorem 1 (sketch):

(obstacle initially in the implicit safety region)

— [(Turning Dynamics)*] (No collisions in the future)
Theorem 2 (sketch):

(implicit safety region ) < (explicit safety region )
Corollary 1 (sketch):

(obstacle initially in the explicit safety region)

— [(Turning Dynamics)*] (No collisions in the future)

The first theorem is a safety property of the hybrid
program modeling our collision avoidance system. It encodes
the requirement for the collision avoidance system to never
let the car collide with the obstacle. The second theorem
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Fig. 10: Variation of single-sided safety region

states the equivalence between two definitions of safety
regions, thereby providing sufficient conditions for collision
avoidance which can be checked at run-time. In the following
d.Z theorems, the following notation is used:

« Point C’s location (center of the rear axle) (Fig[7) is
represented by the coordinate (x,y).

« The sine and cosine of the vehicle’s heading angle when
it is at (x,y) is represented by s and c.

o The time ¢ is the time spent in straight-line motion after
the circular turn. ¢ during the turn is set ideally to 0.

« A general point located on the nominal trajectory (solu-
tion trajectory) is represented by the coordinate (x;,yy).

o The sine and cosine of the vehicle’s heading angle at
(xn,yn) is represented by s, and c,.

o The time ¢, is the associated time in straight-line motion
for the nominal trajectory.

o (Xops;Yobs) represent the stationary obstacle’s location.

C. d.¥ Theorem

The following theorems are a mathematical representation
of the sketches presented before. The intuition behind the
implicit formulation of the safety region is: “for any position
of the car along its trajectory (Vxy,Yn,%n,Sn,Cn), NO Obsta-
cle should intersect the car (a rectangle) at that position.”
“(C(xobs - x) - S(yobs - y) > W/2 N |S(xobs - )C) + C(yobs -
y)—L/2| > L/2)". 1In contrast, the explicit safety region
explicitly models the safety region drawn on Fig. (9)-(I0).
case; — bound; encodes the safety of the bottom half-plane
OVobs < 0); caser — bound, and case; — bounds encode the
safety regions surrounding the turning part of the maneuver,
while caseq — bounds encodes the safety region surrounding
the straight part of the maneuver. Fig. [/| can be referred to
interpret some of the expressions appearing in the explicit
formulation L.y, of the safety region.

w
nit = (v0>0 ANL>0Aw>0 /\R>E
A Cnin>0 A cin <1 As=0Ac=1A
x=—RA y=0A1=0)



Implicit Formulation: Single Sided Safety Region

Limpr = Vxn,Vyn,Vln,VSn,VCn(
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Explicit Formulation: Single Sided Safety Region
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Theorem 1: Verification for Collision Avoidance

init A Lippi — (13)
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Theorem 2: Implict-Explicit Safety Region Equivalence
init = (Limpi <> Lexpt) (14)
Corollary 1: Verification for Collision Avoidance
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2 2
Both Theorem 1 and Theorem 2 have been formally
verified in the theorem prover KeYmaera X.

D. Proof Strategy

The proof of Theorem 2 involves quantifier (V)
elimination. This is done by substituting strategic values of
the nominal coordinates in the expression Liyp;. Since Liy,p;
addresses all possible coordinates of the nominal trajectory,
proving the equivalence between L;,, and L., amounts
to smartly substituting values in the expression Liy,,. This
theorem is needed as an intermediate step. Proving the
collision avoidance safety condition directly for the explicit
region would be more complicated, and would equate to
simulating the vehicle’s overall kinematics for each and
every possible position of an obstacle in this region, and
then evaluating the correctness of the safety condition. This
is problematic because (i) there is an infinite number of
points in the explicit region; and (ii) to evaluate the safety



condition this way requires the use of solution trajectories
which involve undecidable algebra.

Techniques using hybrid automata [7] also prove safety
properties for hybrid systems involving differential equa-
tions, but they require to first obtain the solutions of the
differential equations. Such techniques cannot easily be used
here as our turning kinematics have trigonometric solutions
which are arithmetically undecidable. Instead, we utilize
differential invariants [17], [19] of our vehicle’s turning
kinematics to prove the safety property.

In order to prove Theorem 1 (I3), we equivalently proof
the following:

o The nominal trajectory Tpom is a differential in-
variant of the vehicle dynamics. This means that if
the vehicle starts from any point on T, and evolves
through the dynamic equations for any non-negative
time duration, then the vehicle can only end up at a
point on T,,,,,. This is equivalent to saying that once the
car gets on the nominal trajectory, it forever stays on it.

(16)

((tn:O N Cp > Cmin N\ Sp >0 A sﬁzl—cﬁ

Tnom =

A Xp=—Rc, N y,= Rsn)

\Y, (rnzo A Ccp = Cmin\ sp >0
A sﬁ =1 —cﬁ A X, = —Rc, +votusy
A yn = Rsy +V0tncn>)

To prove that T,,, is a differential invariant of the
vehicle dynamics, we observe that differentials of the
relations that define Ty, (I6), are all 0 along the
direction of system of differential equations that govern
the dynamics.

o The vehicle is on the nominal trajectory 7,,,, at t =0.
This fact is easily proved by evaluating the relations of
T.om at t =0 and observing that the initial state of the
vehicle satisfies those relations.

« If the vehicle is on the nominal trajectory 7., then it is
not colliding with the obstacle. This fact easily follows
from the definition of implicit safety region L.

This completes the proof of Theorem 1 (I3). Corollary
1 follows from Theorem 1 (13)) and Theorem 2 (14).

IV. RELATED WORK

Formal verification of collision avoidance has been of
great interest to the formal methods community. Much of
the past work has focused on airplane collision avoidance,
but collision avoidance for robots has found new interest in
recent years.

Regarding robot collision avoidance, S. Mitsch et al. [15]
formally verify the collision avoidance for planar robots
using non-linear dynamic program based modeling. Their
collision model is based purely upon the center to center dis-
tance, essentially modeling a circular-shaped robot, without
considering any realistic geometry for the robot’s body. B.
Martin et al. [14] formally verify station keeping maneuvers

for a planar robot. They have used a non-linear hybrid
program to model the overall dynamics and a differential-
invariant-based approach for proving related safety proper-
ties. However they consider the robot’s environment free
of any obstacles, and do not analyze collision avoidance
conditions.

Regarding aircraft collision avoidance, C. Tomlin et al.
[23] formally verify conflict resolution maneuvers for air-
craft, using an approach based upon automata-theoretic
modal logic. A. Platzer and E. M. Clarke [20] formally verify
collision avoidance maneuvers for aircraft. They analyze pla-
nar turning maneuvers but they don’t consider any extended
geometry for the aircraft, instead modeling collision purely
on the basis of center to center distance. J.-B. Jeannin er al.
[10] formally verify the ACAS X (Next-Generation Airborne
Collision Avoidance System) industrial system developed by
the Federal Aviation Administration (FAA). They determine
and formally verify the geometric configurations of aircraft,
under which the advice given by ACAS X is safe. They
use a hybrid program and a safety-region-based approach
for the task of formal verification, however the dynamic
model considered is linear and does not consider rotations
of the aircraft. G. Dowek et al. [3] provide a provably safe
distributed conflict resolution strategy for aircraft, consider-
ing both horizontal and vertical maneuvers. Their dynamics
model is similar to [10], and does not consider rotation of
the safety buffer around the aircraft.

Regarding car collision avoidance, S. M. Loos et al.
[13], and T. Sturm and A. Tiwari [22] formally verify the
correctness of adaptive cruise control algorithms. However
the dynamic motion of the car is constrained to a straight
line in both of these works and does not include any turning
maneuver.

Overall, our approach is different from previous related
works in that:

« unlike [23], we base the model of our non-linear hybrid
program on d.Z which is much more suitable for
handling differential equations.

« unlike [13]-[15], [20], [22], we utilize a safety region
based modeling technique for formally verifying the
safety property of the hybrid program. This technique
provides a superior and much faster on-line implemen-
tation for the task of vehicle guidance.

o unlike [10], we consider a non-linear hybrid program
for the dynamics model which includes the effect of
vehicle body rotation.

« unlike [10], [13], [15], [20], [22], our vehicle model is
more realistic having an extended, rotating, rectangular
geometric body.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The current collision avoidance system guides the vehi-
cle around a stationary obstacle with a formally verified
swerving maneuver. This guidance system guarantees that
the vehicle will not collide with any stationary obstacle as
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Fig. 11: Trajectory comparison

long as the system variables satisfy certain well defined
conditions. These conditions come in the form of the explicit
safety region L,,,;. Hence, as long as at t = 0, the obstacle
lies within the safety region of the advisory (R,8"*), the
vehicle is guaranteed to avoid it safely.

With the current result, given a geometric configuration
for the vehicle and the static obstacle, we can obtain a set of
provably correct swerving maneuvers of the form (R, 0™).
This set can then be further analyzed to obtain advisories
which fulfill additional requirements, e.g., maintaining a min-
imum required safety distance from the obstacle, minimizing
the extra control effort in avoiding collision, etc.

B. Ongoing and Future Work

The current work analyses and formally verifies a collision
avoidance system which issues emergency maneuvers involv-
ing swerving. The effectiveness of such a collision avoidance
system in robustly deterring any collision of the vehicle with
the obstacle, depends upon the size of the safety region for
the advised maneuver ((R,0™*) in this work).

If we allow the vehicle speed v to be actively reduced by
applying the brakes while swerving, the resulting trajectory
can exhibit much sharper turns (Fig. [TT). Hence, by turning
and braking simultaneously, the vehicle can avoid obstacles
which it would not have by swerving alone. In other words,
we can increase the safety region of the system by issuing
advisories of combined maneuvers of turning and braking.

In ongoing work [2], we are extending the scope of the
current collision avoidance system, by analyzing simultane-
ous braking and swerving. The collision avoidance system
presented in this paper can be seen as a special case of that
more generalized version. By the addition of braking effect
to the system, the resulting overall kinematics becomes more
complicated, and the formal verification is more involved.
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