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ABSTRACT
Many vehicle accidents result from collision with foreign objects.
Automatic and provably safe collision avoidance systems are thus
of prime importance to the automobile industry. Previous work on
formally verifying car collision avoidance maneuvers typically only
focuses on braking-only or swerving-only maneuvers. In this work,
we study combined braking and swerving maneuvers and establish
formally verified conditions under which safety from collision is
ensured. One major constrain in performing such joint maneuvers
is that a vehicle’s tires have limited traction which can be used
either for braking or swerving. So in essence, a combined maneuver
can trade off braking ability for turning when it is advantageous
to do so and vice-versa. In this work, we study the full continuous
range of combined maneuvers, from maximal turning with little
braking to maximal braking with little turning.

We use a unicycle model with Ackermann’s steering for the
car’s motion, and the circle of traction forces to model the trade-off
between braking and swerving. Resulting vehicle kinematics are
formulated as a hybrid program in differential dynamic logic dL. We
use the automated theorem prover KeYmaera X to formally verify
the correctness of the collision avoidance property. This verification
provides a mathematical guarantee that a given maneuver can pre-
vent the car from collision with obstacles under certain conditions.
The employed method is generic with a purely symbolic model and,
thus, can be applied to verify other types of collision avoidance
systems exhibiting richer behaviour.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; • Computing methodologies→Model verification and val-
idation; • Computer systems organization→ Robotic autonomy.
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1 INTRODUCTION
One of the leading causes of vehicle accidents is on-road collision
with other objects. Hence the automotive industry is interested in
developing technologies that assist the driver in such emergency
situations, e.g., automated collision avoidance systems, advanced
driver assisting systems, etc. These systems either guide the vehicle
to safety, or issue safe advisories for the driver to follow. Internally,
they utilize vehicle response models and path planning controllers.

Although vehicle response models and path planning controllers
for collision avoidance have been extensively studied, e.g. [8, 10,
11, 15, 26, 29], the implementation of these collision avoidance sys-
tems involves interaction between cyber systems (high level path
planning controllers) and physical systems (vehicle’s motion). This
interaction, combined with increasing complexity of such systems,
calls for extreme caution during their design. Furthermore, due to
the safety critical nature of such systems, there is a need for mathe-
matical validation of collision avoidance before their deployment.

In this paper, we extend our previous work [1] on formally ver-
ifying a swerving maneuver for obstacle avoidance. We formally
verify a generic collision avoidance system which issues safe advi-
sories to an automobile moving in a planar scenario. The system
is generic in the sense that it can issue a whole class of advisories
ranging from swerving-only to braking-only, as well as any possible
combination of swerving and braking. The formally verified collision
avoidance system provides a mathematical guarantee of safety un-
der a set of well-defined conditions. We have modeled the vehicle’s
behaviour using a unicycle model conforming to pure Ackermann
steering [13]. For simplicity, the obstacle has been modeled as a
static point object in the vehicle’s plane of motion. Our collision
avoidance system is a discrete controller issuing discrete safety
maneuvers to the vehicle. This results in piece-wise, continuous
vehicle kinematics. Furthermore, the dimensions used in this work
have been kept symbolic to increase its applicability.

The piece-wise, continuous nature of the overall kinematics of
the vehicle and the required task of formally verifying a cyber-
physical system calls for a hybrid program-based modeling of the
problem. Additionally, the specification of collision avoidance can
be easily formulated as an equivalent safety property of the de-
veloped hybrid program for verification. In this work we develop
such hybrid programs and formally verify the safety property of
no-collision under a set of well-defined preconditions on system
variables, thereby verifying the collision avoidance system. Since
our overall kinematics involve piece-wise, continuous differential
equations, we have used differential dynamic logic dL [19] which
is intuitive in handling such continuous dynamics, to develop the
hybrid program-based model of our collision avoidance system. We
then utilize the dL theorem prover KeYmaera X [7] to perform the
formal verification of our model.

Challenges. The central challenge of this work arises from the rel-
atively generic nature of our vehicle kinematics model. This model
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conforms to a non-linear hybrid program based modeling for our
collision avoidance system. Furthermore, the general solution of
the developed vehicle kinematics model involves transcendental
functions, namely trigonometric and exponential functions. Due to
the undecidable nature of such functions, the amount of machin-
ery applicable for the task of formal verification becomes greatly
reduced. To circumvent this, we used a differential-invariant based
approach to verify the safety properties of our hybrid program.

Organization. In Section 2, we describe our vehicle kinematics
model and discuss its behaviour during different maneuvers. This
Section also contains a brief introduction to differential dynamic
logic dL. Section 3 presents the collision avoidance system, its cor-
responding hybrid program and the formal verification of collision
avoidance during a swerve-only maneuver. Section 4 extends the
content of section 3 to include braking while swerving maneuvers
in our collision avoidance system model. These sections 3 and 4
also describe our differential invariant based method for formally
verifying the collision avoidance system. In section 5 we compare
our differential dynamic logic based method of formal verification
with other available techniques such as reachability analysis, and
discuss their respective applicability and disadvantages for our
problem. Finally, we discuss related work in section 6 and conclude
this paper in section 7.

2 KINEMATIC MODELING
2.1 Equations of Motion
To develop a kinematic model of the planar vehicle with a rect-
angular body, we first derive a similar model for a point vehicle.
Subsequently we assume that the extended vehicle conforms to
pure Ackermann’s steering [13] (no sideslip at any wheel). Using
this assumption along with the kinematics of the point vehicle
(strategically chosen to be at the midpoint of the rear axle), we
generate the kinematic model of the extended vehicle. The strategic
choice for the location of point vehicle to coincide with the mid-
point of rear axle of extended vehicle (point C in Fig. 1), provides a
simplification that the heading of the extended vehicle lies parallel
to the instantaneous velocity ®v of our point vehicle at all times.

Fig. 1 shows the kinematic diagram of the vehicle. We use vari-
ables x and y for the Cartesian position coordinates of the point C ,
and v for its speed. The instantaneous radius of curvature for the
point vehicle is depicted as R, and its heading angle as θ .

(1) - (5) are the resulting equations of motion for the point vehicle.

Ûx(t) = v(t) sin(θ (t)) (1)
Ûy(t) = v(t) cos(θ (t)) (2)
Ûv(t) = −µд cosϕ (3)

R(t) =


v(t )2

µд sin (ϕ) if Rmin ≤
v(t )2

µд sin (ϕ) and µ ≤ µo

Rmin if Rmin >
v(t )2

µд sin (ϕ)
(4)

Ûθ (t) =
v(t)

R(t)
=


µд sin (ϕ)
v(t ) if Rmin ≤

v(t )2
µд sin (ϕ) and µ ≤ µo

v(t )
Rmin

if Rmin >
v(t )2

µд sin (ϕ)
(5)

The following parameters have been used in the above equations:

• д: the magnitude of the acceleration due to gravity;
• µ: the effective coefficient of friction between the driving
surface and the vehicle’s tires;

• µ0: the coefficient of the corresponding static friction; note
that we always have µ ≤ µ0 by definition of static friction;

• Rmin : the minimum turning radius, constrained by the steer-
ing geometry of the vehicle;

• ϕ: the angle of braking (Fig. 2).
Fig. 2 shows the circle of traction force for the vehicle [5]. The ra-

dius of the circle equals the total traction force, Fµ , generated by the
contact between the tires and driving surface. The angle of braking,
ϕ, is a parameter that describes the allocation of total traction force,
Fµ , between braking force FB , and turning force FT . For instance,
when ϕ = 0, all the available force is allocated to the braking force,
FB , and there is no turning. Similarly, when ϕ = π

2 , all the available
force is allocated to turning force, FT , and there is no braking. Note
that c1 and c2 (described below) are constant throughout the swerve
and represent µд cos (ϕ) and µд sin (ϕ), respectively. This means the
amount of force allocated for both swerving and braking does not
change during the maneuver.

FB = µmд cos(ϕ) = c1 ∗m FT = µmд sin(ϕ) = c2 ∗m

Fµ = µmд =
√
F 2B + F

2
T

2.2 Assumptions and Behavior
In the rest of this paper (unless stated otherwise), we make the
following assumptions:

• The vehicle is approximated to be a rectangle of length, L,
and width,W .

• Skidding effect at the tires during any of the maneuvers has
been ignored.

• We also make the simplification that the vehicle has no body
behind its rear-axle, to ignore the effect of notch formation
during swerving. The phenomenon of notch formation has
been studied in detail in our previous work [1], and it has
been shown to be of the order of a few centimeters for a

Figure 1: Kinematic Diagram
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Figure 2: Circle of Traction Forces [5]

standard car. For vehicles with a longer length behind the
rear-axle such as busses, the notch becomes more important.
However, the formulation of our dL models and theorems
will remain mostly unchanged.

2.3 Differential Dynamic Logic dL
Differential dynamic logic dL [19] is an extension of dynamic logic
with support for differential equations. It supports discrete assign-
ments, implementation of choice and control loops, and execution
of differential equations [20–22], making it an appropriate model-
ing choice for our work. We have used hybrid programs (HP) [20],
the language of dL, in our modeling. A brief description of some
of the operators of dL used in our models is given here.

• α∗ non-deterministic repetition operator which repeats the
program α for zero or more times.

• x ′ = θ &Q : evolves x along the differential equation (x ′ = θ )
for any arbitrary amount of time in the evolution domain Q .

• p → [α] q : says that all executions of hybrid program α
starting in a state satisfying logical formula p, end up in a
state satisfying q. It is simillar to the Hoare triple {p}α {q}
with precondition p and post-condition q.

For a more comprehensive description of differential dynamic
logic dL and its operators, readers are referred to [19–22].

3 FORMAL VERIFICATION OF
SWERVING-ONLY MANEUVERS

3.1 Collision Avoidance System1

The collision avoidance system for the swerving-only maneuver
is modeled as a discrete controller. By using steering as an input
to the vehicle, the controller is able to swerve the vehicle into a
circular trajectory. This is followed by a subsequent straight-line
motion once the obstacle is passed.

This collision avoidance system is depicted in Fig. 3. Since the
swerving-only maneuver applies no force towards braking, effec-
tively the angle of braking, ϕ, is set to 90 degrees. Also the origin
of the coordinate system is shifted to the location of the center of
turn for simplicity (Fig. 3).

The system’s advisories are assumed to be of the following form:
1The formal models and proofs described in Sections 3 and 4 of this paper are available
at https://jeannin.github.io/papers/hscc20.zip

Figure 3: Collision Avoidance System

• (R, θmax ). Here R is the advised radius of the turn (measured
at point C (2.1) which is represented by (x,y) and (xn,yn )
in Fig. 3) and θmax is the angle of the turn with respect to
the initial direction of travel.

• R is assumed to be satisfying the two constraints of eq. (4):
R ≥ Rmin and v2o/R ≤ µ0д

• Weassume that the values of cos(θmax ) = cmin and sin(θmax )

= smax are available to us.
• After turning through angle θmax with a constant speed of
v = vo , the car proceeds straight with the same speed. The
coordinate system is assumed to be centered at the center of
the advised turn.

• to =
Rθmax

vo , refers to the time instant when car leaves the
circular trajectory and starts moving tangentially.

• The advisory is assumed to involve right turn only. This does
not result in any loss of generality, since the case of left turn
is symmetric to that of right turn.

Using these assumptions, the solution trajectories for Equations (1)-
(5), representing the location and heading of the point vehicle are
given by Equations (6) - (7).

t ≤
Rθmax

vo
:


x(t) = −R cos(θ (t))

y(t) = R sin(θ (t))

θ (t) = (vot)/R

(6)

t >
Rθmax

vo
:


x(t) = −R cos(θmax ) +vo (t − to ) sin(θmax )

y(t) = R sin(θmax ) +vo (t − to ) cos(θmax )

θ (t) = θmax

(7)

These solution trajectories result in a path called aDubins Path [4]
and our vehicle behaves similar to a Dubins vehicle where its be-
haviour is restricted to traversing a combination of circular curves
and straight lines in a fixed plane, at a constant speed.
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Figure 4: Safety Region

3.2 dL Model
In developing the dL model for the collision avoidance system, we
have utilized the notion of "safety regions" [12] for a given advisory
(R, θmax ). The safety region for a given advisory is defined as the
set of all possible locations of the obstacle where the advisory
results in a no-collision case. Fig. 4 depicts the safety region for one
specific case. In general this depiction will look different depending
on the dimensions of the car as well as the specific advisory issued.
For more details, readers are referred to our previous work [1].

To verify the collision avoidance system, we follow the approach
of [12] and use two different (but equivalent) formulations of the
safety region: the implicit formulation, which is better amenable to
formal proofs but cannot directly be checked at run-time because it
contains quantifiers; in contrast with the explicit formulation, which
contains explicit expressions for the safety region boundary but is
comparatively less amenable to formal proofs. The approach con-
sists of proving our model with respect to the implicit formulation
(it is easier), then proving that our implicit and explicit formula-
tions are equivalent. Therefore, we formulate the following safety
theorems, that we make more precise in the next section:

Theorem 1 (sketch):
(obstacle initially in the implicit safety region)

→ [(Turning Dynamics)∗] (No collisions in the future)
Theorem 2 (sketch):

(implicit safety region Limpl1 ) ↔ (explicit safety region Lexpl1 )

The first theorem is a safety property of the hybrid programmod-
eling our collision avoidance system. It encodes the requirement for
the collision avoidance system to never let the car collide with the
obstacle. The second theorem states the equivalence between two
definitions of safety regions, thereby providing sufficient conditions
for collision avoidance which can be checked in run-time.

In the following dL theorems, the following notation is used:

• Point C’s location (centre of the rear axle) (Fig.5) is repre-
sented by the coordinate (x,y).

• The sine and cosine of the vehicle’s heading angle when it
is at (x,y) is represented by s and c .

• The time t is the time spent in straight-line motion after the
circular turn. t during the turn is set ideally to 0.

• A general point located on the nominal trajectory (solution
trajectory) is represented by the coordinate (xn,yn ).

• The sine and cosine of the vehicle’s heading angle at (xn,yn )
is represented by sn and cn .

• The time tn is the associated time in straight-line motion for
the nominal trajectory.

• (xobs ,yobs ) represent the location of the stationary obstacle.

3.3 dL Theorem
The following theorems are a mathematical representation of the
theorem sketches presented before. The intuition behind the implicit
formulation of the safety region is: “for any position of the car along
its trajectory (∀xn,yn, tn, sn, cn ...), no obstacle should intersect the
car (a rectangle) at that position.” “(|c(xobs − x) − s(yobs − y)| >
W /2 ∨ |s(xobs − x) + c(yobs − y) − L/2| > L/2)”. In contrast, the
explicit safety region explicitly models the safety region drawn
on Fig. 4. case1 → bound1 encodes the safety of the bottom half-
plane (yobs < 0); case2 → bound2 and case3 → bound3 encode the
safety regions surrounding the turning part of the maneuver, while
case4 → bound4 encodes the safety region surrounding the straight
part of the maneuver. Fig. 5 is provided to help in understanding
the geometric meaning of some of the expressions appearing in the
explicit formulation of safety region.

init1 ≡
(
vo > 0 ∧ l ≥ 0 ∧ w ≥ 0 ∧ R >

W

2
∧ cmin > 0 ∧ cmin ≤ 1 ∧ s = 0 ∧ c = 1 ∧

x = −R ∧ y = 0 ∧ t = 0
)

Implicit Formulation: Safety Region

Limpl1 ≡ ∀xn,∀yn,∀tn,∀sn,∀cn

(
( (
tn = 0 ∧ cn ≥ cmin ∧ sn ≥ 0 ∧ s2n = 1 − c2n

∧ xn = −Rcn ∧ yn = Rsn
)

∨
(
tn ≥ 0 ∧ cn = cmin ∧ sn ≥ 0

∧ s2n = 1 − c2n ∧ xn = −Rcn +v0tnsn

∧ yn = Rsn +v0tncn
) )

→

( (
|c(xobs − x) − s(yobs − y)| >

W

2

)
∨

(
| s(xobs − x) + c(yobs − y) −

L

2
| >

L

2

) )
4



Explicit Formulation: Safety Region

case1 ≡ yobs < 0
bound1 ≡ −∞ ≤ xobs ≤ ∞

case2 ≡ 0 ≤ yobs < L

bound2 ≡ xobs < −

(
R +

W

2

)
∨

[
yobs <

(
R −

W

2

)
smax

∧

(
x2obs <

(
R −

W

2

)2
− y2obs ∨ x0 > 0

)]
∨

[
yobs ≥

(
R −

W

2

)
smax

∧ yobs <

(
R +

W

2

)
smax + Lcmin

∧ −xobscmin + yobssmax <

(
R −

W

2

) ]
∨

[
yobs ≥

(
R +

W

2

)
smax + Lcmin

∧

((
x2obs + y

2
obs > L2 +

(
R +

W

2

)2
∧ −xobscmin + yobssmax >

(
R +

W

2

) )
∨ −xobscmin + yobssmax <

(
R −

W

2

) )]
case3 ≡ L ≤ yobs <

√
L2 +

(
R +

W

2

)2
bound3 ≡ xobs <

(
− R −

W

2

)
∨

[
yobs <

(
R −

W

2

)
smax

∧

(
x2obs <

(
R −

W

2

)2
− y2obs ∨ xobs > 0

)]
∨

[(
R −

W

2

)
smax ≤ yobs

∧ −xobscmin + yobssmax <

(
R −

W

2

)]
∨

[
x2obs >

(
R +

W

2

)2
+ L2 − y2obs

∧ −xobscmin + yobssmax >

(
R +

W

2

)]

case4 ≡

√
L2 +

(
R +

W

2

)2
≤ yobs

bound4 ≡ −xcmin + ysmax <

(
R −

W

2

)
∨ −xcmin + ysmax >

(
R +

W

2

))

Lexpl1 ≡ (∧4
i=1(casei → boundi ))

The safety property representing collision avoidance has been
formulated in and proved in KeYmaera X. Proving this theorem, in
turn proves the correctness of the collision avoidance system.

dyn1 ≡

( (
Ûs = c

v0
R
, Ûc = −s

v0
R
, Ûx = v0s, Ûy = v0c

& t = 0 ∧ c ≥ cmin
)

∪
(
Ût = 1, Ûx = v0s, Ûy = v0c & c = cmin

) )
no_collision1 ≡

(
| c(xobs − x) − s(yobs − y) | >

W

2

∨ | s(xobs − x) + c(yobs − y) −
L

2
| >

L

2

)
Theorem 1: Verification for Collision Avoidance

init1 ∧ Limpl1 →
[
(dyn1)

∗
]
(no_collision1) (8)

We can now formally prove the equivalence between the implicit
and explicit formulations of the safety region, in KeYmaera X:

Theorem 2: Implicit-Explicit Safety Region Equivalence

init1 →
(
Limpl1 ↔ Lexpl1

)
(9)

3.4 Proof Strategy
In order to prove (9), the quantifier ∀must be eliminated by strategi-
cally substituting certain nominal coordinates in Limpl1 expression.
This theorem gives an easier method to verify safety of the collision
avoidance system, rather than using the explicit region directly,

Figure 5: Turning Circle for Swerving-only Maneuver
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which would require an evaluation of the safety conditions at every
point in the given region. Due to the existence of infinite points
in the given region and undecidable algebra in the solutions, this
direct, this explicit approach is less plausible.

Classical techniques of proving properties of hybrid program
involving differential equations [9], such as (8), require solving the
dynamics and subsequently proving the required properties using
these obtained solutions. Such techniques can not be used here as
the solutions involve trigonometric functions which are arithmeti-
cally undecidable. Instead we have utilized a differential invariant
based method. This method uses the differential invariants of the
turning dynamics of the vehicle to verify its properties. This proof
is done in 3 parallel steps. In order to prove (8), we equivalently
prove the following:

• The nominal trajectory Tnom1 (10) is a differential invariant
of the vehicle dynamics. Technically, this means that if the
vehicle start from any point on Tnom1 and evolves through
the dynamic equations for any non-negative time duration,
then the vehicle can only end up at a point on Tnom1 . This
is equivalent to saying that once the car gets on the nominal
trajectory, it forever stays on it.

Tnom1 ≡ (10)( (
tn = 0 ∧ cn ≥ cmin ∧ sn ≥ 0 ∧ s2n = 1 − c2n

∧ xn = −Rcn ∧ yn = Rsn
)

∨
(
tn ≥ 0 ∧ cn = cmin ∧ sn ≥ 0

∧ s2n = 1 − c2n ∧ xn = −Rcn +v0tnsn

∧ yn = Rsn +v0tncn
) )

To prove that Tnom1 is a differential invariant of the vehicle
dynamics, we observe that differentials of the different rela-
tions that define Tnom1 (10), are all 0 along the direction of
system of differential equations that govern the dynamics.

• The vehicle is on the nominal trajectoryTnom1 at t = 0. This
fact is easily proved by evaluating the relations of Tnom1
at t = 0 and observing that the initial state of the vehicle
satisfies those relations.

• If the vehicle is on the nominal trajectory Tnom1 , then it is
not colliding with the obstacle. This fact easily follows from
the definition of implicit safety region Limpl1 .

This completes the proof of our model.

4 FORMAL VERIFICATION OF
BRAKING-WHILE-SWERVING MANEUVER

4.1 Collision Avoidance System
Due to the complexity of general solutions for the braking-while-
swerving maneuvers (shown in section 4.2), the collision avoidance
system is modeled to be much simpler than for the swerving-only
case. Here, we restrict the controller to provide only the braking
angle ϕ as input. We also ignore the switching behaviour of the
controller from the swerving-only case, where it steered the vehicle
back to follow a straight line once the obstacle was passed. Rather
the vehicle is assumed to follow the same advisory throughout its

motion. For further simplification, the vehicle is assumed to be a
point object.

4.2 Braking-while-Swerving Maneuver
The braking-while-swerving maneuver is based on the same equa-
tions of motion (1) - (5) as the swerving-only maneuver. The key
difference is that the braking angle ϕ , π

2 and can be varied be-
tween 0 and π

2 . Varying ϕ values result in different combinations
of braking and swerving, further resulting in different trajectories.

Solving (1) - (5) for a generic fixed value of ϕ we get:

c1 = µд cos(ϕ) c2 = µд sin(ϕ)

v(t) = vo − c1t (11)

θ (t) =
c2
c1

ln
(

v0
v0 − c1t

)
(12)

x(t) = −

{
(v0 − c1t)

2
(
2c1 sin

(
c2(ln(v0)−ln(v0−c1t ))

c1

))
c22 + 4c

2
1

(13)

+
(v0 − c1t)

2
(
c2 cos

(
c2(ln(v0)−ln(v0−c1t ))

c1

))
c22 + 4c

2
1

}
+

v20c2

c22 + 4c
2
1

y(t) = −

{
(v0 − c1t)

2
(
2c1 cos

(
c2(ln(v0)−ln(v0−c1t ))

c1

))
c22 + 4c

2
1

(14)

−

(v0 − c1t)
2
(
c2 sin

(
c2(ln(v0)−ln(v0−c1t ))

c1

))
c22 + 4c

2
1

}
+

2v20c1
c22 + 4c

2
1

Substituting v(t) and θ (t) from (11) - (12) in (13) - (14), we get
the following solutions.

x(t) = −

(
v2 (2c1 sinθ + c2 cosθ )

c22 + 4c
2
1

)
+

v20c2

c22 + 4c
2
1

(15)

y(t) = −

(
v2 (2c1 cosθ − c2 sinθ )

c22 + 4c
2
1

)
+

2v20c1
c22 + 4c

2
1

(16)

Numerically simulating these equations in MATLAB provides
the car’s trajectory under a braking while turning maneuver (Fig 6),
which turns out to be a logarithmic spiral (shown later). In this
numerical simulation, the values used for different constants are
д = 9.8 m/s, µ = 0.7, ϕ = 70o and v0 = 15 m/s the initial speed of
the car. The features shown in Fig. 6 are explained below:

• The dashed path represents the circular trajectory followed
by the swerving-only (ϕ = π

2 ) system for a full rotation.
• The solid path represents the trajectory followed by the
braking-while-swerving (ϕ = 70o ) until v decreases to 0.

• Each ‘x’ represents the instantaneous center of turn for the
braking-while-swerving at several points along its course.

• ‘O’ marks the initial center of turn.
• (x0,y0) is the initial location of car for both maneuvers.
• ‘F’ is the final location for the braking-while-swerving ma-
neuver. This is the point where the vehicle comes to a stop.
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Figure 6: Comparison of Swerving-only and Braking-while-
Swerving Maneuvers

Figure 7: Logarithmic Spiral Trajectory and Parameters

Upon analysing the car’s trajectory, we found that it is identical
to a logarithmic spiral (Fig. 7). Below are the solutions for xC (t)
and yC (t) which represent the location of the point vehicle C with
respect to the final point F (the location of C when vehicle comes
to a full stop (Fig. 7)).

xC (t) =
[
−v(t)2(2c1 sin(θ ) + c2 cos(θ ))

] / [
c22 + 4c

2
1
]

(17)

yC (t) =
[
−v(t)2(2c1 cos(θ ) − c2 sin(θ ))

] / [
c22 + 4c

2
1
]

(18)

Manipulating (17) - (18) results in the following equation.

xC (t)
2 + yC (t)

2 =
v(t)4

c22 + 4c
2
1
=
v40e

−(4c1/c2)θ (t )

c22 + 4c
2
1

(19)

In order to show that the braking-while-swerving trajectory
follows a logarithmic spiral, we must convert xC (t) and yC (t) into
polar coordinates defined by (r (t),ψ (t)). (Fig. 7)

xC (t) = r (t) cos(ψ (t)) yC (t) = r (t) sin(ψ (t))

Furthermore, r (t) can be determined using (19) andψ (t) can be
determined using the resulting equations.

r (t) =
√
xC (t)2 + yC (t)2 = v

2
0e

(−2c1/c2)θ
/ √

c22 + 4c
2
1 (20)

cos(ψ (t)) = [−2c1 sin(θ (t)) + c2 cos(θ (t))]
/ √

c22 + 4c
2
1 (21)

sin(ψ (t)) = [−2c1 cos(θ (t)) − c2 sin(θ (t))]
/ √

c22 + 4c
2
1 (22)

Here, we define a new parameter, α , which is a constant (Fig. 7).
Using α and (21) - (22), we obtain the following equations.

cos(α) = c2
/ √

c22 + 4c
2
1 sin(α) = 2c1

/ √
c22 + 4c

2
1

cos(ψ (t)) = − cos(α − θ (t)) sin(ψ (t)) = − sin(α − θ (t))

Finally, θ (t) can be represented in terms α andψ (t) (in degrees).

θ (t) = 180 + α −ψ (t)

Now that we have obtained θ (t) in this form, we can show that
(20) fits into the form of an logarithmic spiral. This then allows us
to rotate our axis (so that it matches the line joining (0,0) and F)
and convert the problem to polar coordinates (r (t), θ (t)) and define
safety region to be the region outside of the spiral (Fig. 7).

General Logarithmic Spiral: r = k1e
k2θ

Our Polar Equation: r (t) =
v20√

c22 + 4c
2
1

e−(2c1/c2)θ (t )

4.3 dL Model: Cartesian Coordinates
Similar to the case of swerving-only maneuvers, in developing the
dL model for the collision avoidance system, we have utilized the
notion of "safety regions" for a given advisory (Fig. 7). To verify
the collision avoidance system, we again use two different (but
equivalent) formulations of the safe region: the implicit formulation
and the explicit formulation. Therefore, we formulate the following
safety theorems, that we make more precise in the next section:

Theorem 3 (sketch):
(obstacle initially in the implicit safety region)
→ [(Braking while Swerving Dynamics)∗]

(No collisions in the future)

Theorem 4 (sketch):
(implicit safety region Limpl2 ) ↔ (explicit safety region Lexpl2 )

The first theorem is a safety property of the hybrid program
modeling in our collision avoidance system, which encodes the
requirement for the collision avoidance system to never let the car
collide with the obstacle. The second theorem states the equivalence
of two definitions of safety regions, thus giving sufficient conditions
for collision avoidance which can be checked in run-time.

Due to complexity in the general solutions of our vehicle kine-
matics model (11) - (14), we make the following assumptions for the
collision avoidance system for braking-while-swerving maneuvers:
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• Both the vehicle and obstacle are assumed to be point objects.
• The advisory issued by the system is in the form of values of
c1 = µд cosϕ and c2 = µд sinϕ where both are assumed to
be greater than 0. These values in turn dictate the trade-off
between braking and turning ability.

• The vehicle continues on the spiral path till it comes to a
complete stop. We do realise that such a behaviour is not real-
istic, and that the equation (12) blows up whenv approaches
0, but for the sake of simplicity we ignore this.

• In our dL model, we encode the sin and cosine of the vehi-
cle’s heading angle by variables s and c .

• The origin of the Cartesian coordinate system (0, 0) is fixed
at the starting point of the maneuver (Fig. 7).

• In order to encode the exponential behaviour of θ we intro-

duce an auxiliary variable I = e
−c1θ
c2 and follow its evolution

with time by adding its dynamics to our equations of mo-
tions. One fact to be noted here is that this auxiliary variable
I is a coordinate variable and only the values of θ ∈ [0, π ]
are allowed, corresponding to the polar coordinated of the
point. Here θ is measured as shown in Fig. 7. Note that the
tilted base of the spiral shown in the figure joins the final
and the starting point of the vehicle’s trajectory.

• We assume that we have the knowledge of the position co-
ordinates of the obstacle (xobs ,yobs , Iobs ). We point out the
fact that Iobs is a function of xobs ,yobs and this relation
is assumed to hold true before hand from the verification
process (explained later). For reference, the relation between
xobs ,yobs & Iobs is given below:

cos(θobs ) =
−xF (xobs − xF ) − yF (yobs − yF )√

x2F + y
2
F

√
(xobs − xF )2 + (yobs − yF )2

(23)

sin(θobs ) =
xFyobs − yF xobs√

x2F + y
2
F

√
(xobs − xF )2 + (yobs − yF )2

(24)

Iobs = e
−c1θobs

c2 (25)

• xF and yF represent the coordinates of the final point of the
vehicle’s trajectory (stopping point). The coordinates for this
point are given by:

xF =
v20c2

c22 + 4c
2
1

yF =
2v20c1

c22 + 4c
2
1

• (x,y, I ) denote the coordinates of any general point in the
plane and (xn,yn, In ) denote the coordinates of a point on the
nominal trajectory (solution trajectory). These coordinates
also exhibit the relation described in (23)-(25).

4.4 dL Theorem: Cartesian Coordinates
The following theorems are a mathematical representation of the
theorem sketches presented before.

init2 ≡
(
c1 > 0 ∧ c2 > 0 ∧ x = 0 ∧ y = 0

∧ s = 0 ∧ c = 1 ∧ v = vo ∧ I = 1 ∧

xF =
v2oc2

(c22 + 4c
2
1)

∧ yF =
2v2oc1

(c22 + 4c
2
1)

)
Implicit Formulation: Safety Region

Limpl2 ≡ ∀xn,∀yn,∀In
(
In ≤ 1 ∧ In > 0 ∧

(xn − xF )
2 + (yn − yF )

2 =
v4o I

4
n

c22 + 4c
2
1

)
→

(
Iobs , In ∨ (xobs − xF )

2 + (yobs − yF )
2 >

(xn − xF )
2 + (yn − yF )

2
)

Explicit Formulation: Safety Region

Lexpl2 ≡

(
(xobs − xF )

2 + (yobs − yF )
2 ≥

v4o I
4
obs

c22 + 4c
2
1

)

The safety property representing collision avoidance has been for-
mulated below in dL. Only Theorem 3 was formally proved in
KeYmaera X. Although Theorem 4 is proved by hand, we were not
able to complete its formal proof in KeYmaera X, due to a lack of
support for trigonometric and exponential functions (see Section 5).

dyn2 ≡
(
x ′ = vs ∧ y′ = vc ∧ s ′ =

cc2
v

∧ c ′ =
−sc2
v

∧ v ′ = −c1 ∧ I ′ =
−c1I

v
& I > 0 ∧v > 0

)
no_collision2 ≡

(
Iobs , I ∨ (xobs − xF )

2

+ (yobs − yF )
2 > (x − xF )

2 + (y − yF )
2
)

Theorem 3: Verification for Combined Maneuver

init2 ∧ Limpl2 →
[
(dyn2)

]
(no_collision2) (26)

Theorem 4: Implicit-Explicit Safety Region Equivalence

init2 →
(
Limpl2 ↔ Lexpl2

)
(27)

4.5 Proof Strategy: Cartesian Coordinates
Considering the involvement of transcendental functions like trigon-
ometric as well as exponentials in the general solution of our brak-
ing while swerving dynamics, the classical methods (by invoking
direct solutions) of proving properties for hybrid programs involv-
ing differential equations is out of question. Hence again we utilize
the differential invariants of our dynamics to prove the required
safety property. This proof is once again done in 3 parallel steps. In
order to prove (26), we equivalently prove the following -
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• The nominal trajectory Tnom2 (28) is a differential invariant
of the vehicle dynamics.

Tnom2 ≡

(
In ≤ 1 ∧ In > 0 (28)

∧ (xn − xF )
2 + (yn − yF )

2 =
v4o I

4
n

c22 + 4c
2
1

)
However, unlike the case of swerve-only model, proving that
the nominal trajectoryTnom2 (28) is a differential invariant of
the vehicle dynamics, is not straight forward. A direct differ-
entiation of relations expressed in Tnom2 , does not equals to
0 along the direction of system dynamics. We require some
auxiliary conditions to hold true, in order for the differentia-
tion of relations expressed in Tnom2 to be equal to 0 along
the direction of system dynamics. In particular, we utilize
the following direct differential invariants of our dynamics:

s2 + c2 = 1
v

I
= vo

(x − xF ) =
−v2(2c1s + c2c)

c22 + 4c
2
1

(y − yF ) =
−v2(2c1c − c2s)

c22 + 4c
2
1

To make these auxiliary invariants available to the theorem
proverwhen proving invariance ofTnom2 , we use subsequent
differential cut (dC) arguments to add them to the evolution
domain of our dynamics. Subsequently, differentiating the
relations expressed inTnom2 , equates to 0 along the direction
of system evolution.

• The vehicle is on the nominal trajectoryTnom2 initially. This
fact is easily proved by evaluating the relations ofTnom2 and
observing that the initial state of the vehicle satisfies those
relations.

• If the vehicle is on the nominal trajectory Tnom2 , then it is
not colliding with the obstacle. This fact easily follows from
the definition of implicit safety region Limpl2 .

4.6 dL Model: Polar Coordinates
In section 4.3, we had mentioned the fact that between the variables
(xobs ,yobs , Iobs ) or for that matter between any general (x,y, I ),
there is an inherent relation (23) - (25), which is assumed to hold true
beforehand from the verification process. The reason we resorted
to make this assumption was that the equations (23) - (25) involve
trigonometric and exponential functions, and at present there is no
direct support within KeYmaera X for representing such functions.
Due to this same reason, the proof of (27) was skipped in this work.

However, the fact that the general solution trajectories for the
brakingwhile swervingmaneuver turn out to be a logarithmic spiral,
point us to the possibility that the polar representation of the prob-
lem, albeit being unintuitive to directly obtain, might prove to be
simpler as compared to the Cartesian one. For developing the polar
representation, we make the following additional assumptions:

• The origin of the polar coordinate system (0, 0) is fixed at
the focal point (F) of the resultant spiral trajectory.

• We assume that we have the knowledge of the position co-
ordinates of the obstacle (robs , Iobs ).

• (r , I ) denote the coordinates of any general point in the plane
and (rn, In ) denote the coordinates of a point on the nominal
trajectory (solution trajectory).

4.7 dL Theorem: Polar Coordinates
The below dL theorems formulate the same safety property/theorem
mentioned in section (4.4), to verify the collision avoidance of the
braking-while-swerving maneuvers in polar coordinates. In con-
trast to section (4.4), we are able to prove both Theorem 5 and
Theorem 6 in KeYmaera X.

init3 ≡
(
c1 > 0 ∧ c2 > 0 ∧ k > 0 ∧ k2 = c22 + 4c

2
1

∧ vo > 0 ∧ v = vo ∧ ro =
v2o
k

∧

r = ro ∧ I = 1 ∧ Iobs ≤ 1 ∧ Iobs > 0
)

Limpl3 ≡ ∀rn,∀In
(
In ≤ 1 ∧ In > 0 ∧ rn = ro I

2
n

)
→

(
Iobs , In ∨ robs > rn

)
Lexpl3 ≡ robs > ro I

2
obs

dyn3 ≡
(
r ′ =

−2c1ro I2

v
∧ v ′ = −c1

∧ I ′ =
−c1I

v
I > 0 ∧v > 0

)
no_collision3 ≡

(
Iobs , I ∨ robs > r

)
Theorem 5: Verification for Combined Maneuver

init3 ∧ Limpl3 →
[
(dyn3)

]
(no_collision3) (29)

Theorem 6: Implicit-Explicit Safety Region Equivalence

init3 →
(
Limpl3 ↔ Lexpl3

)
(30)

The proof strategy for Theorem 5 (29) is similar to the Carte-
sian case and proving Theorem 6 (30) involves simple quantifier
elimination.

5 DISCUSSION
The hybrid models and their formal proofs discussed in this work
(Theorem 1 (8), Theorem 2 (9), Theorem 3 (26),Theorem 5 (29)
and Theorem 6 (30)), have all been developed using differential
dynamic logic dL [19] and have been formally verified in the dL
theorem prover KeYmaera X [7]. Differential dynamic logic dL
provides an efficient way of modeling piece-wise continuous differ-
ential equations as hybrid programs.

However, throughout the development of dL models (3.2) & (4.3)
for our collision avoidance systems, we faced challenges due to the
fact that in its current implementation, differential dynamic logic
dL and the theorem prover KeYmaera X, provide no direct ways of
expressing exponentials and trigonometric functions. KeYmaera X
does not allow directly expressing those functions on purpose,
so as to preserve the decidability of its logic. We circumvented
this problem up to a certain extent, by encoding trigonometric
and exponential expressions as independent variables (e.g. s, c & I
in Theorem 3 (26) etc.), but this method proves to be challenging
when the involved expressions become complicated. For example, in
developing Theorem 3 (26) and Theorem 4 (27) , we assumed that
the inherent relations (23)-(25), between the position coordinates
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of the obstacle (xobs ,yobs , Iobs ) or between any generic point’s
coordinates (x,y, I ) holds true before the verification process. This
assumption was made because we could not find a relatively easy
method of encoding the inherent relationship as a precondition
check in differential dynamic logic dL and the theorem prover
KeYmaera X. We faced similar difficulties in expanding our current
Theorem 3 (26) to include a finite rectangular shape for the vehicle
(as done in Theorem 1 (8) and Theorem 2 (9)). Also, formally
proving equivalence between implicit and explicit safety region in
Theorem 4 (27) was not done in KeYmaera X due to the lack of
support for trigonometric and exponential function.

Recent results [24, 25] show a complete axiomatization for dif-
ferential equation invariants described by Noetherian functions,
including trigonometric and exponential functions. These results
were developed concurrently to this work, and we were not able
to use them. However, they are currently being implemented in
the newest version of KeYmaera X, and should simplify the kind of
analysis done in this work in the future.

6 RELATEDWORK
Formal verification of collision avoidance has been of great interest
to the formal methods community. In the context of automobile
maneuvers, past formal verification work focuses on braking-only
or turning-only maneuvers, and to the best of our knowledge this
is the first work exploring formal verification of braking while
swerving. But much of the past work on collision avoidance has
focused on airplanes, as well as on robots in more recent years.

Regarding robot collision avoidance, Mitsch et al. [18] formally
verify the collision avoidance for planar robots using non-linear
dynamic program basedmodeling. But their collisionmodel is based
purely upon the center to center distance, without considering any
realistic geometry for the robot’s body. Martin et al. [17] formally
verify station keepingmaneuvers for a planar robot. They have used
a non-linear hybrid program to model the overall dynamics and
a differential invariant based approach for proving related safety
properties. However, they consider the robot’s environment free
of any obstacles and do not analyze collision avoidance conditions.
Both of these works pertain to swerving-only motion of the vehicle.

Regarding aircraft collision avoidance, Tomlin et al. [28] for-
mally verify conflict resolution maneuvers for aircraft, however
their hybrid program is based upon automata-theoretic modal logic
and the analysis and proofs are non-intuitive and considerably
more involved. Platzer and Clarke [23] formally verify collision
avoidance maneuvers for aircraft. They analyze planar turning ma-
neuvers but they do not consider any extended geometry for the
aircraft, instead modeling collision purely on the basis of center
to center distance. Jeannin et al. [12] formally verify the ACAS X
system (Next-Generation Airborne Collision Avoidance System), by
formally verifying the geometric configurations of aircraft, under
which the advice of ACAS X is safe. They use a hybrid program
and a safety-region-based approach for the task of formal verifi-
cation, however the dynamic model considered is linear and does
not consider rotations of the aircraft. Dowek et al. [3] provide a
provably safe distributed conflict resolution strategy for aircrafts,
considering both horizontal and vertical maneuvers. Their dynam-
ics model is similar to [12], and does not consider rotation of the

safety buffer around the aircraft. Again all of these works consider
either turning-only or braking-only maneuvers for the vehicle.

Regarding car collision avoidance, Loos et al. [16] and Sturm
and Tiwari [27] formally verify the correctness of adaptive cruise
control algorithms. In their models, the dynamic motion of the car
is constrained to a straight line without turns.

Reachability analysis methods, such as CORA [2], dReach [14]
or SpaceEx [6], offer an alternative method to formally verify dy-
mamical systems. Although those techniques are typically more
automated, they rely on approximations and cannot give guaran-
tees in terms of parametric safe regions, expressed symbolically in
terms of the different parameters. In contrast, the parametricity of
the safe regions is crucial in our work, so that a maneuver can be
deemed safe or unsafe at runtime in a small amount of calculation
time. All the verification is performed offline and simple, formally
verified safety checks can be implemented online.

Overall our approach differs from previous related works in that:
• unlike [16–18], we explore simultaneous braking and swerv-
ing during the same maneuver;

• unlike [28], we base the model of our non-linear hybrid
program on dL to handle differential equations;

• unlike [16–18, 23, 27], we utilize a safety-region-based mod-
eling technique for formally verifying the safety property of
the hybrid program. This technique provides a faster on-line
implementation for vehicle guidance;

• unlike [12], we consider a non-linear hybrid program for
the dynamics model, including the effects of vehicle body
rotation;

• unlike [12, 16, 18, 23, 27], our vehicle model is more realistic
having an extended geometric body.

• unlike reachability analysis methods [2, 6, 14], we verify
exact and parametric safe regions.

7 CONCLUSIONS AND FUTUREWORK
This paper focuses on a Unicycle Model for swerving-only and
swerving-while-braking systems. A useful extension of this work
would be to relieve some crucial parameters, e.g., the coefficient of
friction, to be non-deterministic. Such an extension would make
the model more realistic and the results more widely applicable.

Future work can include expansion to more sophisticated models,
such as a Bicycle Model. The Bicycle Model improves upon the
Unicycle Model by using more realistic control parameters, such as
steering angle and braking force, in the differential equations.

Furthermore, the models of this paper feature a single, stationary
obstacle. While this represents a common scenario found on the
road, many other scenarios exist. Future work would handle multi-
agent systems consisting of a variety of obstacles such as multiple
stationary obstacles and moving intruders.
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